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Overview

This document provides analyses briefly discussed—but not presented—in “ButWait, There’s
More! Maximizing Substantive Inferences from TSCS Models”.

Forecast Errors

In this section, we present evidence that generating forecast errors through simulation meth-
ods will provide the same substantive inferences as those generated via analytical methods.
Regardless of the N × T configuration, the degree of the autoregression, and the model fit,
dynamic simulations with forecast errors will echo those inferences made with analytically-
derived forecast errors.

Enders (2004) provides the formula for the conditional variance of the forecast. First,
assume that we estimate the following model: yt = α0+α1yt−1+ ϵt. The conditional forecast
at time t + 1 is Etyt+1 = α0 + α1yt. If we assume that the elements of the et sequence are
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independent and have a variance of σ2, then the variance of the j-step-ahead forecast error is
V ar[et(j)] = σ2[1+α2

1+α4
1+α6

1+ · · ·+α
2(j−1)
1 ]. Since the size of the forecast error increases

as a function of j, we will have greater confidence in short-term forecasts than long-term
forecasts. Also important to note is that “in the limit as j → ∞, the forecast error variance
converges to σ2/(1− α2

1)” (Enders 2004: 80).

We can derive the conditional variance of the forecast error analytically by calculating the
σ2 and the α1 from our model. Or, we can make use of the asymptotic sampling distribution
from Clarify to generate a large number of replicates (r = 1000) of both σ2 and α1, and then
use the percentile method to calculate confidence intervals. We prefer to use simulation-
based methods over analytical methods, a preference that is echoed by King, Tomz and
Wittenberg (2000: 352-353).

To demonstrate the similarities of these two approaches, we present simulation evidence
and figures from the following model estimated on varying sample sizes (N and T ): yt =
0.25 + (α1 × yt−1), where we modify the values of α1. Figures S.1 and S.2 demonstrate
the similarity between analytically-derived and simulation-based confidence intervals across
degree of trend (where each of the four cells represents increasing values of α), as well as
sample size. We slightly jitter the confidence intervals so that they are distinguishable.

[Figures S.1 and S.2 about here]

At the same configurations of N and T , as well as level of autoregression (α1) the
analytically-derived and simulation-based forecasting errors give virtually identically-sized
confidence intervals. While we only show simulation evidence for two sample configurations
(i.e., 10 × 10 and 20 × 40), it is our experience that scholars can be confident in using
simulation-based methods to produce dynamic simulations with forecast errors that are vir-
tually identical to those derived analytically regardless of the sample size or model fit.

Simulation-Based Coverage Rates

In this section we explore the credibility of the multivariate normal assumption underpinning
simulation methods to sample sizes traditionally used in TSCS. These Monte Carlo exper-
iments represent a worthwhile endeavor since Beck and Katz’s (1995) focus on comparing
panel-corrected standard errors to the Parks method leaves us to wonder how OLS performs
under these conditions. We follow Beck and Katz’s (1995) lead in calculating the level and
overconfidence as a way of assessing OLS regression’s performance. While level represents
the proportion of the replicates where the confidence interval contains the true coefficient,
we calculate overconfidence the following way:
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Overconfidence = 100

√∑1,000
l=1 (β̃(l) − ¯̃β)2√∑1,000
l=1 (s.e.(β̃(l)))2

,

where β̃(l) is the OLS estimate of β1 for replication l. Overconfidence measures the extent to
which the estimator understates variability. If the estimator produces standard errors that
accurately reflect its variability, then overconfidence is 100. And, if the estimator produces
standard errors that overstate the true sampling variability, and thus the standard errors are
too large, overconfidence is less than 100 (Beck and Katz 1995: 639).

In each experiment, we varied N (i = 1, . . . , N) and T (t = 1, . . . , T ) to mimic traditional
sample size configurations found in a survey of TSCS models (Beck and Katz 1995: 635). We
then generated 1000 replicates of the NT error terms according to the model being specified,
ϵ
(l)
i,t , where i = 1, . . . , N , t = 1, . . . , T and l = 1, . . . , 1000. For each replicate, l, the errors
are generated as a zero-mean NT -variate normal distribution with the covariance structure
varying depending on the panel error assumptions. We fixed the xi,t over the 1000 replicates
and generated 1000 replicates of yi,t using

y
(l)
i,t = 0.25 + 10× xi,t + ϵ

(l)
i,t ; i = 1, . . . , N ; t = 1, . . . , T ; l = 1, . . . , 1000.

Since we are principally concerned with the performance of OLS standard errors, Ta-
ble S.1 shows the performance of OLS analytically-derived standard errors (labeled OLS-A)
to those calculated via simulation methods (labeled OLS-S). We calculate 1000 replicates
of a sample with an N = 10, varying levels of T , as well as contemporaneous correlation.
We modify the variance covariance matrix of the errors so that all non-contemporaneous
observations are 0 and the values of the contemporaneous correlation varies. For example,
if N = 2 and T = 3, the variance covariance matrix of the errors is the following (Beck and
Katz 1995: 646):

Ω =


σ2
1 0 0 σ12 0 0
0 σ2

1 0 0 σ12 0
0 0 σ2

1 0 0 σ12

σ12 0 0 σ2
2 0 0

0 σ12 0 0 σ2
2 0

0 0 σ12 0 0 σ2
2


We will first explore instances of contemporaneous correlation. Tables S.1-S.3 show how

OLS analytically-derived standard errors compare to simulation-based standard errors in
terms of overconfidence and level. Table S.1 has an N = 10, whereas Table S.2 and Table S.3
have N of 15 and 20, respectively.

[Tables S.1-S.3 about here]
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Under all conditions of contemporaneous correlation and sample configuration, OLS standard
errors perform quite well. In all circumstances, the overconfidence is close to 100, and never
strays either below 95 or above 105. Likewise, the level is always close to 95 indicating that
the 95% confidence interval contains the true β around 95% of the time. This is the case in
samples that would be considered small in TSCS analyses (N = 10, T = 10) as well as large
samples (N = 20, T = 40). Most importantly, the simulation-based standard errors perform
nearly identical to those derive analytically under all the different scenarios.

To gauge OLS’ performance in times of panel heteroskedasticity, we design experiments
with panel-heteroskedastic error structures that are related to the panel structure of the
independent variables. For each value of t, we generate the N -vector xi,t(i = 1, . . . , N) as a
draw from a zero-mean N -variate normal distribution. We then set the variance of the first
half of the units to 1 while we experimentally manipulate the variance of the second half of
the units. Beck and Katz (1995) introduce the following measure of panel heteroskedasticity,
which we also use: “the variance of the ith unit is σ2

i . Let ωi =
1
σi
. We define standardized

heteroskedasticity as the standard deviation of the ωl

ω̄
” (646). We can then calculate varying

levels of both contemporaneous correlation and panel heteroskedasticity.

In Table S.4 we provide the results of Monte Carlo experiments of varying T (N is fixed at
15 since we found no substantive differences for other values of N), panel heteroskedasticity
and contemporaneous correlation.

[Table S.4 about here]

As shown in the previous tables, in those situations with only contemporaneous correla-
tion (i.e., panel heteroskedasticity = 0), both OLS standard errors perform quite well. On
the other hand, in the presence of moderate levels of panel heteroskedasticity (0.3), both
analytically-derived and simulation-based standard errors tend to dramatically overestimate
the size of the standard errors (producing low values of overconfidence), which produces
confidence intervals that always include the true β (level=100). Also important to note is
that, even though these standard errors are quite large, both versions of the standard errors
(OLS-A and OLS-S) perform similarly.

The Monte Carlo experiments in Table S.4 suggest that using OLS in the presence of
panel heteroskedasticity should be strongly discouraged. While the results certainly support
this conclusion, we should emphasize that these conditions are unlikely to be replicated in
typical research situations. Keep in mind that standard errors are accurate in the presence
of panel heteroskedasticity “if the terms in the error covariance matrix, Ω, are not related
to the squares and cross products of the independent variables” (Beck and Katz 1995: 640).
As an attempt to demonstrate the conditions under which OLS may not be appropriate,
we deliberately manipulate the experiments to extreme conditions—in a sense, “stacking
the deck”. Indeed, in our experiments the variances and covariances of the errors were
proportional to the variances and covariances of the independent variables. It is our belief
that there are few real-world situations where the data would be generated in such a way,
and to such a high degree of panel heteroskedasticity.
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As an effort to expand the capability of our dynsim command, and help scholars produce
reliable estimates of the variance-covariance matrices, we modify the Stata command to
allow estimates from panel-corrected standard errors. We feel that this is extremely helpful,
as panel-corrected standard errors perform much better than OLS in terms of level and
overconfidence in those situations where OLS performs poorly.

[Table S.5 about here]

Table S.5 compares simulation-based OLS standard errors to those simulation-based panel-
corrected standard errors (labeled PCSE-S) for varying levels of T (N is fixed at 15) and
contemporaneous correlation in the presence of panel heteroskedasticity (0.3). While still
producing standard errors that are larger than those from the true sampling variability (as
well as much larger confidence intervals), panel-corrected standard errors offer a drastic
improvement over simulation-based OLS standard errors.

Finally, we relax the assumption that the serial correlation follows the same pattern for
all units. We calculate the errors according to a unit-specific first-order autoregressive (AR1)
process:

ϵi,t = ρϵi,t−1 + νi,t.

The ρ1 for the first half of the units is 0.9 while we vary the ρ2 for the second half of the
units. To assess the performance of OLS in situations of explanatory variables with varying
trends, we also experimentally manipulate the the independent variable:

xi,t = δxi,t−1 + µi,t.

Table S.6 compares analytically-derived OLS standard errors to those simulation-based
OLS standard errors for varying levels of T (N is fixed at 15), panel autocorrelation (ρ2), and
trend (δ). The results should reassure scholars who use OLS in the presence of an autore-
gressive series or trending independent variables. Under all conditions typically observed in
TSCS data, OLS standard errors—either analytically-derived or simulation-based—will have
standard errors that largely reflect the true sampling variability and will recover the true β
about 95% of the time. Moreover, the similarity of analytically-derived and simulation-based
standard errors points to the usefulness of simulation-based methods.

Nevertheless, the caveats of Clarify also apply to our dynsim command. As King, Tomz
and Wittenberg (2000: 351) state, “we assume that the statistical model is identified and
correctly specified[. . . ]which allows us to focus on interpreting and presenting the final re-
sults[. . . ]In short, our algorithms work whenever the usual assumptions work.” Thus, the
impetus is on the scholar. However, in most situations OLS performs surprisingly well, and
certainly the simulation-based techniques perform as well as the analytically-derived stan-
dard errors. In those rare circumstances where OLS performs poorly, one can use other
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methods such as panel-corrected standard errors. Given these sample structures and the
presence of these problems, we are confident that the general principle of graphing dynamic
simulations is broadly applicable.

dynsim: A Program for Producing Dynamic Simula-

tions

In this section we provide some background for using simulation methods to interpret long-
term dynamic relationships, introduce our Stata command for producing dynamic simula-
tions, and demonstrate how we use our command to create the figures in the manuscript.

The dynsim command is somewhat limited in the number of models that it can run by two
constraints: first, the requirement that the dependent variable is continuous, and second, the
few models applicable with Clarify. This means that the command only currently produces
dynamic simulations for OLS models and, after some slight modifications to the original
estsimp and simqi commands, OLS with panel-corrected standard errors. It is important
to note, however, that the idea of sampling from the asymptotic sampling distribution as
a means of producing dynamic simulations is one that applies to a broader class of models
with continuous dependent variables (for a Bayesian perspective, see Jackman 2009).

For more information, please see Williams and Whitten (2011).
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Tables and Figures

Table S.1: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Contemporaneous Correlation: N = 10

OLS-A OLS-S
CC Overconfidence (%)b Levelc Overconfidence (%) Level

0.25 101.0 94.8 100.9 94.9
T a = 10 0.50 101.1 94.6 101.0 94.4

0.75 101.2 94.6 101.2 97.4

0.25 100.2 94.2 100.2 94.2
T = 20 0.50 100.2 94.1 100.2 93.9

0.75 100.2 94.3 100.0 93.9

0.25 100.7 94.1 100.8 93.8
T = 30 0.50 100.7 93.9 100.8 93.8

0.75 100.7 93.8 100.8 93.6

0.25 98.0 94.6 98.0 94.5
T = 40 0.50 98.0 94.6 98.1 94.6

0.75 98.0 94.7 97.9 94.7

a Number of time points.

b Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

c Percentage of 95% confidence intervals containing β.
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Table S.2: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Contemporaneous Correlation: N = 15

OLS-A OLS-S
CC Overconfidence (%)b Levelc Overconfidence (%) Level

0.25 97.6 96.0 97.6 95.8
T a = 15 0.50 97.7 95.9 97.7 96.0

0.75 97.6 96.0 97.5 96.0

0.25 95.0 95.7 95.0 95.7
T = 20 0.50 95.1 95.7 95.1 95.3

0.75 95.1 95.6 95.0 95.5

0.25 96.2 96.1 96.3 95.8
T = 30 0.50 96.3 96.1 96.3 95.9

0.75 96.3 96.1 96.4 96.3

0.25 98.9 95.3 98.9 95.0
T = 40 0.50 98.8 95.3 98.9 95.0

0.75 98.9 95.2 98.9 95.0

a Number of time points.

b Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

c Percentage of 95% confidence intervals containing β.
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Table S.3: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Contemporaneous Correlation: N = 20

OLS-A OLS-S
CC Overconfidence (%)b Levelc Overconfidence (%) Level

0.25 98.7 95.2 98.8 95.0
T a = 20 0.50 98.8 94.9 98.8 94.9

0.75 98.8 94.9 98.9 95.0

0.25 103.8 95.3 103.8 95.0
T = 25 0.50 103.8 95.3 104.0 94.9

0.75 104.0 95.1 104.0 95.0

0.25 97.0 95.1 96.9 95.0
T = 30 0.50 97.0 95.0 96.9 95.0

0.75 96.9 95.0 96.9 95.2

0.25 97.4 95.9 97.4 95.5
T = 40 0.50 97.5 95.8 97.4 96.1

0.75 97.5 96.0 97.5 96.0

a Number of time points.

b Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

c Percentage of 95% confidence intervals containing β.
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Table S.4: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Contemporaneous Correlation and Panel Heteroskedasticity

OLS-A OLS-S
PH CC Overconfidence (%)b Levelc Overconfidence (%) Level

0 0 100.4 96.1 100.6 95.5
0 0.25 100.1 95.8 100.0 95.6

T a = 10 0.3 0 22.4 100.0 22.3 100.0
0.3 0.25 22.0 100.0 22.0 100.0
0.3 0.50 22.0 100.0 22.0 100.0

0 0 94.4 95.5 94.4 95.5
0 0.25 95.0 95.7 95.0 95.4

T = 20 0.3 0 18.3 100.0 18.3 100.0
0.3 0.25 17.8 100.0 17.8 100.0
0.3 0.50 17.8 100.0 17.8 100.0

0 0 97.0 95.6 97.0 95.5
0 0.50 96.3 96.1 96.2 95.8

T = 30 0.3 0 16.0 100.0 16.0 100.0
0.3 0.25 15.3 100.0 15.3 100.0
0.3 0.50 15.4 100.0 15.4 100.0

0 0 99.5 95.6 99.4 95.8
0 0.50 98.8 95.3 98.8 95.1

T = 40 0.3 0 14.2 100.0 14.2 100.0
0.3 0.25 13.3 100.0 13.3 100.0
0.3 0.50 13.3 100.0 13.3 100.0

a Number of time points; number of units fixed at 15.

b Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

c Percentage of 95% confidence intervals containing β.
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Table S.5: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Contemporaneous Correlation and Panel Heteroskedasticity versus Panel-
Corrected Standard Errors

OLS-S PCSE-S
PH CC Overconfidence (%)b Levelc Overconfidence (%) Level

0.3 0 22.3 100.0 76.5 99.8
T a = 10 0.3 0.25 22.0 100.0 75.2 99.9

0.3 0.50 22.0 100.0 75.2 99.9

0.3 0 18.3 100.0 80.0 99.4
T = 20 0.3 0.25 17.8 100.0 78.7 99.7

0.3 0.50 17.8 100.0 78.4 99.6

0.3 0 16.0 100.0 82.3 99.2
T = 30 0.3 0.25 15.3 100.0 80.5 99.6

0.3 0.50 15.4 100.0 80.5 99.6

0.3 0 14.2 100.0 81.0 99.1
T = 40 0.3 0.25 13.3 100.0 78.0 99.2

0.3 0.50 13.3 100.0 78.0 99.2

a Number of time points; number of units fixed at 15.

b Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

c Percentage of 95% confidence intervals containing β.
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Table S.6: Performance of OLS Analytically-Derived and Simulation-Based Standard Errors
in the Presence of Panel-Specific Autocorrelation

OLS-A OLS-S
ρa2 δb Overconfidence (%)c Leveld Overconfidence (%) Level
0.30 0.30 102.0 94.3 101.8 94.5
0.50 0.30 102.2 94.1 102.3 94.2

T e = 10 0.30 0.50 102.0 94.3 102.0 93.8
0.50 0.50 102.2 94.1 102.3 93.6
0.30 0.90 102.0 94.3 101.9 94.3
0.50 0.90 102.2 94.1 102.2 93.3

0.30 0.30 97.9 94.3 98.0 94.3
0.50 0.30 99.5 94.8 99.5 94.6

T = 20 0.30 0.50 98.0 94.3 97.9 94.4
0.50 0.50 99.5 94.8 99.5 94.1
0.30 0.90 97.9 94.3 98.0 94.3
0.50 0.90 99.5 94.8 99.4 94.7

0.30 0.30 98.2 94.4 98.1 94.1
0.50 0.30 99.8 94.8 99.7 94.7

T = 30 0.30 0.50 98.2 94.4 98.1 94.2
0.50 0.50 99.8 94.8 99.8 94.3
0.30 0.90 98.2 94.4 98.2 94.5
0.50 0.90 99.8 94.8 99.8 94.4

0.30 0.30 101.3 94.5 101.3 95.0
0.50 0.30 102.4 93.8 102.3 93.8

T = 40 0.30 0.50 101.3 94.5 101.3 94.2
0.50 0.50 102.4 93.8 102.4 93.8
0.30 0.90 101.3 94.5 101.4 94.4
0.50 0.90 102.4 93.8 102.4 93.9

a Serial correlation of errors of second half of units; serial correlation of first half is 0.90.
b xi,t = δxi,t−1 + µi,t.

c Overconfidence = 100

√∑1,000
l=1 (β̂(l)− ¯̂

β)2√∑1,000
l=1 (s.e.(β̂(l)))2

.

d Percentage of 95% confidence intervals containing β.
e Number of time points; number of units fixed at 15.
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Figure S.1: Analytically-Derived and Simulation-Based Forecasting Errors across Varying
Levels of α: N = 10, T = 10, σ2 = 0.93
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Figure S.2: Analytically-Derived and Simulation-Based Forecasting Errors across Varying
Levels of α: N = 20, T = 40, σ2 = 0.68
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