X Marks the Spot:
Unlocking the Treasure of Spatial-X Models

Supplemental Materials

Time lag spatial lag models

In our paper we describe a model with a temporally lagged spatial lag model as being a variant of an
SLX model rather than a SAR model. This is because such a model does not have one of the defining
characteristics of SAR models, endogenous regressors. As Lesage and Pace (2009: 192) write, such a
model “relies on past period dependent variables and contains no simultaneous spatial interaction.” In
this section we provide some more details about models with temporally lagged spatial lag model terms
and how the results from them are interpreted. To do this, we follow a set of notational and presentational
conventions used in Chapter 4 of Elhorst (2014). In that chapter, Elhorst provides a taxonomy of a set
of models that are dynamic in space and time.

Elhorst breaks the effects estimated by such models into four different categories: short-term direct
effects, short-term indirect effects, long-term direct effects, and long-term indirect effects. The distinction
between short-term and long-term effects is a common feature of time series models while, as we discuss
in our paper, the distinction between direct and indirect effects is a common feature of spatial models.

For our purposes, we will consider a set of models beginning with one that is not dynamic in either
time or space and then a select set of models that are dynamic in only one dimension before discussing
the temporally lagged spatial lag model which is dynamic in both dimensions. Across all of these models
we will assume a common panel data structure with observations that vary across units and over time. If
we follow Elhorst’s notational convention of using only temporal subscripts, a simple regression model
without any spatial or temporal dynamics would be written as

y,=XiB+e (1)

which we call a “non-spatial static model.” Because this model has no temporal dynamics, all effects
estimated from it will be short-term and because this model has no spatial dynamics, all effects from it
will be direct. Thus for a one unit increase in a particular independent variable, x;, the effect will simply
be an immediate (short-term direct) increase of [3y.

1Following this notational convention is convenient because it allows the temporal dimension for each term to be in-
dentified by the subscripts and the spatial dimension of each term to be identified by the presence or absence of the con-
nectivity matrix (W). y, and X; contain the IV observations for each unit at time ¢ so thaty; = X;3 + €; expands into



If we add temporal dynamics to Equation 1 in the form of a lagged dependent variable, our model
becomes

Y, =Y, 10+ XiB+ e (2)

which we will call a “non-spatial dynamic model.” For a one unit increase in a particular independent
variable, x;, there will now be both a short-term effect of ), and a long-term effect of 5 (1 — ¢) ~1 From
a spatial perspective, both of these effects are direct because they are caused by changes in the value of the
independent variable in one unit on the value of the dependent variable for that same unit.

If we add spatial dynamics to Equation 1 in the form of a spatially lagged independent variable, our
model becomes

y, = Xt,B + WZtO + € (3)

which we will call a “temporally static SLX” model.? As the name implies, the effects from such a model
will all be short-term. For a one unit increase in a particular independent variable, x;, there will be a
short-term direct effect of 5;,. This model, of course, also has indirect effects are come from the WZ,6.
Thus, for instance, the effects of a global increase in a spatially-specified independent variable, z;, would
be W(gk

If we add spatial dynamics to Equation 1 in the form of a spatially lagged dependent variable, our
model becomes

y, =Wy, +XiB + €& (4)

which we will call a “temporally static SAR” model. As with the temporally static SLX, the effects from
such a model will all be short-term. The direct effect from a SAR model is [(Iy — pW) 1 B;1x]%, where
following Elhorst’s notation, d is a calculation of the mean diagonal element of a matrix.> And the indi-
rect effects from such a model are [(Iy — pW) ™! B.In|"*“™, where Tsum is a calculation of the mean
row sum of the non diagonal elements of a matrix.

Turning to the model of interest, we write the temporally lagged spatial lag model as
y, = X8+ Wy, 0+ € (5)

using 0 instead of p to emphasize that this model is essentially an SLX model. But, because this model
is both temporally and spatially dynamic, it will have a combination of both short-term and long-term

y1 X; ] €1
y2 X5 €
.| =1 .|+ . | andeach of the vectors and matrices in this expansion expands further into IV items. E.g., each of

yT Xr | €T
Y1t
Y2t

they, = | .

YNt

2As discussed in the paper, we specify the independent variables associated with spatial-X effects as Z to emphasize the
point that the variables in X and Z do not have to be the same. Elhorst, and many others, specify both matrices identically as
X or, as in Elhorst’s Chapter 4 discussion of different combinations of models in time and space, X;.

3The components of the short-term direct effects for the SAR model are often separated into the pre-spatial direct effect,

Bk, and then the spatially-filtered direct effect, [(Iny — pW) ™! B In] d



effects as well as direct and indirect effects. In essence, the ¢ term in Equation 5 plays the role of an indi-
vidual 6, term inside 0 in Equation 3 with the addititonal complication that the temporal impact of this
term works in a fashion along the lines of the ¢ term in Equation 2. Thus, the temporally lagged spatial
lag model has unfiltered short-term direct effects, By, just like those of the non-spatial dynamic model
and the temporally static SLX, but it has no short-term indirect effects. This is the case precisely because
the spatially lagged component of the model, Wy, .0, is also temporally lagged. To better understand
how this term works, we can write Equation 5 back one time period as

Vo1 = Xe-18 + Wy, .0+ €1 (6)

and then substitute the right-hand side of Equation 6 into Equation 5,

Y. = Xtﬁ + W(thl,g + WYt729 + thl)e + € (7)

which, if the data being modeled are temporally stationary, meaning |#| < 1, will lead to decreasing
effects as we move more temporally distant from any change in lagged values c_)f ¥, Xy, or €. These

longterm effects consist of own unit, or direct, effects of [(In — OW) 13,1 N]d and indirect effects of
[(IN _ gw)flﬁlkIN]rsum'

In Table 1 we provide the specifications of all 5 of the models that we discuss in this section and in
Table 2 we provide a listing of the four different effects from each model. If we look across the entries
for each model in Table 2, we can see that the temporally lagged spatial lag model is very different from
the temporally static SAR. It does not have the defining characteristic of short-term endogenous effects.
Instead, what it has is a combination of long-term direct effects and long-term indirect effects which
combine elements of the non-spatial dynamic model and the temporally static SLX. And as we note in
the paper, the SAR spatial multiplier matrix, (Iy — pW)~! incorporates immediate feedback through
terms like W? and W3, In contrast, the temporal decay multiplier of the temporally lagged spatial lag
model, (Iy — QW)_l, is simply a spatially weighted geometric lag (aka a Koyck lag) function which, as
long as stationarity conditions are met, means that temporally more distant changes have smaller effects.

Table 1: Different specifications of temporal and spatially lagged models

Model Name Specification
Non-spatial static model y, = X8 + €
Non-spatial dynamic model Yy, =Y, 10+ X8+ €
Temporally static SLX y, = Xi8+WZ0 + ¢
Temporally static SAR y, = pWy, + X;8 + €

Temporally lagged spatial lag model 'y, = X;8 + Wy, 0+ €

Notes:



X1I3BW B JO SJUSWI[2 ~NEOWNSU|COE oyl jo

wns MoJ ueawr o3 jJo Gowuwﬁﬂuﬁmu eSTwUnsS L @EN Xinew e jo uﬁ®8®~® Hwﬁow.mﬂmu ueawi o1 Jo Goﬁuwﬁﬂuﬂmu

E ST P aIoym A.wHONv s1oyrq %Q Posn SUOIIUSAUOD [EUOIIEIOU [NJIST1 SWOS MOJ[O] 9M 9[(El SIYL U] 270N

SiLZE@TQP% — N7)] KZ%@TQP% — N7)] auou I¢] [opow e[ [eneds pagdde Aesoduway,
suou suou wmsa[ NI - (M9 — NT)] p[NTU - (MY — NT)] VS ones A[rerodway,
suou suou 19M ) I¢] XTS oness Aperoduray
auou (@ —1)1 auou el [ppow orureudp [eneds-uoN
suou suou suou U] [opow oneas [eneds-uoN

$10950 $10950 $10950 $109J0 SureN [9pow
10211pUl 10211p 10211pUr 10211p
wia-3uog wiIAN-3uo uII21-110Yg wiIx-110yg

sppow pagdde] A[jeneds pue [exodwai jo suoneoyads JusrayIp WoIy $109yT 7 d[qeL,



Additional Experiments

SAR Model Performance for SAR DGP

In this section we detail how the “correct” models perform for SAR and SLX data-generating processes,
respectively. In both cases, the recovery rates of the coeflicients are, as expected, close to 95%. We provide
these results in Tables 3 and 4.

Table 3: Recovery Rates for the SAR Model Specification: SAR Data-Generating Process

-0.8 -06 -04 -0.2 0 02 04 0.6 038

SAR model: y = X8 + pWy + €
B 942 935 951 95.8 93.6 93.9 948 95.0 94.6
p 950 946 947 950 954 944 933 94.0 944

Second-Order Neighbor Model Performance for SAR DGP

One possibility that we explored in the paper addressed the particular functional form of the higher-
order weights matrices. A specification mirroring the SAR by squaring W (seen in Equation 9 in the
manuscript) produces non-zero values along the diagonal of the partial derivatives matrix, which means
that there are feedback effects, and higher-order effects more generally. If deemed unnecessary by theory,
the functional form of the weights matrix can be modified so that it expressly prohibit feedback effects.
This specification would identify higher-orders of contiguity (see the second-order weights matrix, Wy,q
in Figure 1). The third set of experiments evaluates how well a model specified as

y = x3 + Wx0; + W5,qx0 + € (8)

deals with an SAR DGP where feedback effects are present. As we can see from the third section in
Table 5, which is the same as Table 2 in the manuscript with this additional set of results, this change
in the specification from W2 to W,,q results in a serious reduction in the recovery rates of the zero-
order direct effect, which is now larger, on average, because it has to account for the spatial effects that
would otherwise be modeled as feedback effects. Furthermore, the recovery rates for the second-order
direct effects are, by construction, 0%.* We would only advocate this type of model specification if two
conditions are met: first, the theory is quite clear about the impossibility of feedback eftects, and second,
these feedback effects are shown to be zero in robustness checks.

“Indeed, if we include second- and third-order contiguity weights matrices, we are able to model some of the higher order
effects but still none of the feedback effects.
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Table S: Recovery Rates for Various SLX Model Specifications: SAR Data-Generating Process

-0.8 -06 -04 -0.2 0 02 04 06 0.8

Simple SLX model: y = x3 + Wx0 + €

Direct: Total 94.9 94.4 948 93.7 955 93,5 950 94.0 88.9
0 Order 77.9 919 951 935 955 934 948 90.7 81.0
2nd Order - - - - - - - - -
3rd Order - - - - - - - - -

Indirect: Total 15.1 49.9 852 937 952 935 40.3 0 0
1st Order 914 93.8 955 931 952 945 944 93.8 93.1
2nd Order - - - - - - - - -
3rd Order - - - - - - - - -

SLX model with a squared term: y = x3 + Wx0; + W2x65 + €
Direct: Total 95.0 94.0 951 938 954 940 952 94.4 91.0

0 Order 942 951 952 942 936 948 948 949 95.8
2nd Order  93.2 939 947 946 940 947 93.6 93.4 93.8
3rd Order - - - - - - - - -

Indirect: Total 93.0 94.7 94.8 947 939 945 933 83.7 2.6
1st Order 93.0 949 959 94.0 949 949 944 932 92.6
2nd Order 93.2 939 947 94.6 940 947 93.6 934 93.8
3rd Order - - - - - - - - -

SLX model with a second-order term: y = x3 + Wx8; + Wypgx0s + €
Direct: Total 95.5 93.6 95.0 939 963 933 957 93.8 91.0

0 Order 76.1 899 95.1 937 963 938 953 895 77.9
2nd Order 0 0 0 0 0 0 0 0 0
3rd Order - - - - - - - _ -

Indirect: Total 95.3 94.0 95.1 958 95.0 954 945 90.6 36.0
1st Order 96.5 954 959 942 952 956 950 917 88.4
2nd Order 95.0 945 947 958 945 953 941 946 93.6
3rd Order - - - - - - - - -

SLX model with squared and cubed terms: y = x3 + Wx0; + W2x0s + W3x03 + €

Direct: Total 95.0 942 94.6 943 96.1 944 945 93.7 93.4
0 Order 942 95.1 953 941 939 949 943 949 95.9
2nd Order 93.9 94.0 94.8 952 942 952 93.8 932 93.3
3rd Order 942 93.6 947 935 950 944 950 939 93.4

Indirect: Total 95.5 95.1 95.6 944 952 945 939 926 87.0
1st Order 943 947 95.1 939 949 9377 939 952 94.4
2nd Order 93.9 94.0 94.8 952 942 952 93.8 932 93.3
3rd Order 942 93.6 94.7 935 950 944 95.0 939 93.4




Spatial Error Model (SEM)

A popular alternative to the SAR and SLX models is the spatial error model (SEM).” Instead of the spatial
dependence arising in the outcomes (as in y; influencing y/;, and vice versa) or in the observables (as in x;
influencing y;), the SEM models spatial dependence in the unobservables, or errors:

y=XB+ Wy +e€ (9)

where the overall error is decomposed into €, “a spatially uncorrelated error term that satisfied the normal
regression assumption, and [x], which is a term indicating the spatial component of the error term”
(Ward and Gleditsch 2008: 65-66). If A is 0, then there is no spatial dependence in the errors and an OLS
can be safely estimated; if A is not 0, then “we have a pattern of spatial dependence between the errors
for connected observations” (Ward and Gleditsch 2008: 66). This poses no complications for generating
quantities of interest, as “the differences in the independent variables in 7 do not have effects on outcomes
in observations connected to 7”7 (Ward and Gleditsch 2008: 67). Essentially, this means that variables will
only have a direct effect (i.e., ; on ;) and no indirect effects (such as x; on y;), feedback or otherwise.®

We echo Beck, Gleditsch and Beardsley’s (2006: 30) conclusion that the SEM is not appropriate in
most political science applications. This is because a variable can have an impact on neighboring obser-
vations if omitted (and thus part of the error term), but not if it is included. Consider the example of
economic growth in an SEM model:

[...] remember that the “errors” are just the variables that we either chose not to measure,
or could not measure. In particular, they are errors from the perspective of the analyst,
not the perspective of policy makers in the country. Thus, if Germany grew more quickly
because of some variable not included in the specification, that growth would affect all other
countries. But if Germany grew more quickly because it had a left government, and if that
variable were included in the specification, then this extra German growth would have no
impact on the growth in other countries (30).

It remains to be seen how SLX and SAR models perform when the true data-generating process fea-
tures spatial dependence in the unobservables, which is typically consistent with an SEM model. In other
words, if one is uncertain about the true spatial process at work and diagnostics are uncertain, how dan-
gerous is it to begin with a SLX or SAR model if there is spatial dependence in the unobservables? LeSage
and Pace (2009: 157-159) point out that the result is “unbiased but inefficient coeflicient estimates” and
“inference regarding dispersion of the explanatory variables based on the asymptotic variance-covariance
matrix for the SAR model will be misleading, since error dependence is ignored when constructing the
variance-covariance matrix”.

To explore this possibility we simulate data based on the following equation (Darmofal 2015: 102):

5The description of the SEM draws heavily from Ward and Gleditsch (2008: 65-67).

®Darmofal (2015: 107-108) succinctly states that “because the spatial multiplier in a spatial error model pertains only to
the errors, substantive covariates do not vary in their equilibrium effects based on the spatial locations of the observations in
a spatial error formulation.”



y=x8+¢€ €e=AWe+¢ (10)

with matrix X containing a single variable drawn from a uniform distribution, € [—10, 10], and where
f = 1. Wisan N x N symmetric row-standardized contiguity weights matrix, where each element below
the diagonal is randomly drawn from a Bernoulli distribution. We simulated 1000 data sets at each of
nine different scenarios defined by the strength of the spatial error dependence, A € {—0.8,0.8}.7 As
with the experiments presented in the manuscript, we focus on the recovery rates for direct and indirect
effects of x since those reflect both the coefficients and their uncertainty. Table 5 shows the results of the
experiments.

Two clear patterns emerge from Table 6. The first pattern is that the SAR model does a poor job
of recovering the first-order indirect effect (which is actually 0) in the SEM DGP for models of A that
are lower than lower than 0 or larger than 0.2. In those case, the SAR model finds false evidence that z;
influences y; through the outcomes (i.e., by influencing ;). Since the SAR model finds “phantom” first-
order indirect effects that do not actually exist, it also does a poor job in recovering the true average total
effects (not shown). The second pattern is that the various specifications of the SLX model—ranging
from a simple model with only first-order indirect effects to one with first- through third-order effects—
recovers estimates of the directand indirect effects that are consistently close to 95% for all values of . The
SLX is more flexible in this respect because the s are effectively 0, which rules out higher-order eftects. For
these two reasons, it appears as though the SLX model is more robust to incorrectly specifying the spatial
dependence when it actually occurs in the unobservables. If one is only concerned about generating
meaningful inferences for the explanatory variables, then this type of misspecification is not problematic;
of course, if one is interested in modeling the actual spatial process, then the SLX would be unable to
show that the spatial dependence actually exists in the unobservables.

Application

In this section we explore substantive effects from the defense spending application in the manuscript, as
well as some models to show how deftly SLX handles conditional spatial dependence.

As shown in the SAR model of Table 7, both civil and interstate wars influence defense burdens.
Of course, the coeflicients themselves are only the estimated direct effects of those covariates on defense
burden. To understand the total effect of the covariates, it is important to utilize the partial derivatives
approach. In the manuscript we showed that the total impact of the covariates on the defense burden
depend on the coeflicient (/3), the size of the change in x (in the case of civil and interstate wars, the
difference between a value of 0 and 1), the global spatial autocorrelation coefficient (p), and each state’s
distribution of neighbors (W). Each state potentially has a different configuration of neighbors, which
leads to different indirect effects for each.

To simplify matters, we examine the average direct, indirect and total effects in Table 8. From this
table we can see that the estimated average total effect of a civil war at time ¢ — 1 in a neighboring state
on the defense burden of the focal state at time ¢ is a reduction in military spending as a percentage of
GDP of —0.62%. The effect of a civil war in a state results in a reduction in that state’s defense burden,

7Tt is worth noting that values of A close to the absolute value of 1 are exceedingly rare in practice.



Table 6: Recovery Rates for SAR and Various SLX Model Specifications: SEM Data-Generating Process

0.8 -06 -04 -02 0 02 04 06 0.8

SAR model: y = x3 + pWy + €

Direct: Total ~ 94.6 94.3 94.5 93.4 953 93.8 95.1 94.7 93.4
0 Order 94.7 944 943 93.8 956 93.6 953 947 93.5
2nd Order  98.0 99.4 99.8 998 100 999 999 99.6 99.0
3rd Order 100 100 100 100 100 100 100 100 100

Indirect: Total 59.9 72.1 83.8 90.1 939 97.7 973 96.2 93.1
1st Order 669 77.6 873 912 940 943 90.0 82.6 73.1
2nd Order  98.0 99.4 998 998 100 999 999 99.6 929
3rd Order 100 100 100 100 100 100 100 100 100

Simple SLX model: y = x8 + Wx0 + €

Direct: Total 949 94.8 949 93.8 955 935 953 94.9 93.9
0 Order 94.9 94.8 949 93.8 955 935 953 94.9 93.9
2nd Order - - - - - - - - -
3rd Order - - - - - - - - -

Indirect: Total 94.0 95.5 95.8 93.1 952 94.5 94.8 94.3 95.6
1st Order 94.0 955 95.8 93.1 952 945 948 943 95.6
2nd Order - - - - - - - - -
3rd Order - - - - - - - - -

SLX model with a squared term: y = x5 + Wx6; + W?x0, + €

Direct: Total 95.0 941 950 938 954 94.0 952 95.1 94.0
0 Order 942 951 952 942 93.6 94.7 947 95.0 95.3
2nd Order 94.4 940 949 94.6 94.0 947 93.8 93.9 94.8
3rd Order - - - - - - -

Indirect: Total 96.2 95.1 95.0 94.7 939 944 93.6 92.2 93.3
1st Order 948 955 96.0 94.0 949 949 948 939 95.6
2nd Order 9.4 94.0 949 94.6 94.0 947 93.8 93.9 94.8
3rd Order - - - - - - - - -

SLX model with squared and cubed terms: y = x5 + Wx0,; + W2x0s + W3x05 + €

Direct: Total 94.8 94.2 94.6 943 96.1 945 94.8 94.5 95.2
0 Order 942 950 953 941 939 948 943 949 95.4
2nd Order 94.8 94.0 950 952 942 953 939 933 94.3
3rd Order 94.6 93.8 94.8 93.6 95.0 94.6 953 94.3 94.4

Indirect: Total 95.8 95.5 95.8 945 952 945 94.0 93.2 93.4
1st Order 94.7 94.8 951 939 949 9377 939 952 94.3
2nd Order 948 94.0 95.0 952 942 953 939 933 94.3
3rd Order 94.6 93.8 94.8 93.6 95.0 94.6 953 94.3 94.4
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Table 7: Non-Spatial OLS, SAR and SLX Models of Neighborhood Effects on Defense Burdens

OLS SAR SLX
Model1 Model2 Model3

Spatial Estimates (p and 0)

P 0.07+**
(0.004)
Contiguity x Civil War;_1 -0.11*
(0.07)
Contiguity x Interstate War;_q 0.18***
(0.07)
Ally x Interstate War;_1 -0.006
(0.03)
Contiguity X Defense Burden; 1 0.006***
(0.002)
Defense Pact X Defense Burden;_ 1 0.003***
(0.001)
Non-Spatial Estimates (3)
Civil War;_1 -0.47%* -0.45%** -0.39***
(0.17)  (0.16) (0.15)
Interstate War;_1 0.46*** 0.45*** 0.37**
(0.16)  (0.16) (0.16)
Total Population (Logged);—1 0.03 0.03 0.02
0.02)  (0.02)  (0.02)
Alliance with US -0.21** -0.22** -0.15*
(0.10)  (0.09)  (0.08)
AUS Defense Burden -0.04 -0.03 -0.05
0.07)  (0.07)  (0.08)
AUSSR /Russia Defense Burden 0.006 -0.01 -0.05***
0.02)  (0.02)  (0.02)
US Allyx A US Defense Burden 0.14 0.11 0.21
(0.12)  (0.11)  (0.13)
US Ally x A USSR Defense Burden 0.005 0.01 0.02
(0.03)  (0.03)  (0.02)
Annual Trend -0.007***  -0.006™**  -0.004™*
(0.002)  (0.002)  (0.002)
1992 1.13*** 0.74™** -1.26%**
(028)  (027)  (0.21)
Defense Burden;_1 -0.12*%*  -0.12"**  -0.14***
(0.006)  (0.01)  (0.006)
ADefense Burden;_1 -0.14%**  -0.13*  -0.14***
(0.01)  (0.02)  (0.01)
Constant 0.46** 0.41* 0.22

(0.22) (0.21) (0.17)

N 6,328 6,328 7,266

Note: Models include regional fixed effects. The SAR model excludes isolates.
* p-value < 0.1; ** p-value < 0.05; *** p-value < 0.01
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on average, of —0.46%. Note that this effect is slightly larger than the coefficient for civil war,_;; the
difference is the result of feedback effects, or the effects of civil war in state ¢ influencing its neighbor 7,
which feeds back to affect state 7. The average indirect effect—or, the average effect of a civil war in the
focal state on other states is —0.17%. These effects demonstrate that civil wars can meaningfully impact
states’ defense burdens, and over a quarter of the overall effect spills over into neighboring states. The
effects of interstate war,_; are similar in magnitude and distribution between direct and indirect effects,
except for being positive. On average, experiencing an interstate war at time ¢ — 1 increases that state’s
defense burden by 0.46%, and spills over to increase the defense burdens of neighboring states by 0.17%.

As we demonstrated with our Monte Carlo experiments, the consequences of model choices can
range from understating the overall effects, to making the opposite inference regarding indirect effects.
Recall that in the case of civil and interstate wars, the SLX variables were consistent with the pattern of
positive spatial dependence in the SAR model (consistent with the positive p). When we compare the
various effects of the SLX to the SAR model for both of these variables (see Table 2), we see that the
SLX produces average total and indirect effects that are much larger (almost two and three times larger in
the case of znterstate war,_1), and smaller direct effects. Since the SLX model does not force the spatial
autocorrelation to be represented by one parameter, the indirect effects are free to vary in size based on
the particular covariate. In the case of defense burden,_,, the average total effects are much smaller in the
SLX model because the coefficients for the two SLX variables are signed in the opposite direction from
the defense burden,_, variable. In the SAR model, contrary to expectations, increasing one’s defense
burden by 1% is estimated to decrease contiguous neighbors’ defense burdens by -0.04%; in the SLX
model, this same change is estimated to increase contiguous neighbors’ defense burdens by 0.02%. The
latter estimation technique is more flexible and provides more realistic inferences.

Another advantage in the flexibility of the SLX is the ability to properly model conditional patterns
of spatial dependence. In the first SLX model (Model 2 in Table 7), we demonstrated that the spatial
effects of defense burden, | were conditioned by patterns of neighbors via contiguity and defense pact.
To explore this further, let us examine how the flexibility of SLX models allows us to easily estimate
region-specific SLX variables.® Due to security agreements, colonial histories, regional organizations,
and other characteristics (see ?, 429-430 for a summary), covariates that might spillover in one region
are contained in another. In Models 4 and 5 (Table 9) we estimate separate region-specific parameters
for both variables (czvil war,_ and interstate war,_;). By doing so, we can show how the effects of wars
depend on the regions in which they occur.

The results in Table 9 (and the effects depicted in Table 2) demonstrate that the non-conditional
SLX model (Model 3) clouded a great deal of region-specific heterogeneity in the spatial patterns. The
resulting average indirect effect of czvil wary_ in Model 3 was slightly negative (-0.36). This value repre-
sents a rough average of the indirect effects across regions, and obscures the fact that in one of the regions
(Africa) civil wars in one’s region actually increases states’ defense burdens. This is also the case in znter-
state wary_1, as both Europe and Asia/Oceania respond in the opposite manner as the other regions to
interstate wars in the region. These inferences—while relatively easy to derive in the SLX setting—would
be prohibitively difficult, if not impossible, with an SAR model.

One set of circumstances where the SAR model is generally more appropriate than the SLX is in the
case of higher-order effects beyond the first-order. If these effects are expected to occur simultaneously,

8For this example, we use the Correlates of War’s regional classification (see Stinnett et al. 2002 for a description).
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Table 8: Average Direct, Indirect and Total Effects of Covariates on Defense Burden

Variables W Specification Avg. Effects SAR SLX
M2 M3 M4 M5 Meé
Direct -0.46  -0.39
Civil War;_1 Contiguity Indirect -0.17  -0.36
Total -0.62  -0.74
Region (Europe) Indirect -4.63
Region (Middle East) Indirect -6.32
Civil War;_1 Region (Africa) Indirect 2.04
Region (Asia) Indirect -1.37
Region (Americas) Indirect -1.54
Direct 0.46
Contiguity Indirect 0.17
Total 0.63
Direct 0.37
Contiguity + Alliance Indirect 0.51
Total 0.88
Contiguity (W) Indirect 0.51
Interstate Wary_; Direct 0.05
Contiguity (W?) Indirect 0.19
Total 0.24
Direct 0.01
Contiguity (W?) Indirect 0.11
Total 0.12
Direct 0.30
Contiguity (Zizl W) Indirect 0.80
Total 1.10
Region (Europe) Indirect -1.43
Region (Middle East) Indirect 2.16
Interstate Wary_1 Region (Africa) Indirect 0.21
Region (Asia) Indirect -0.84
Region (Americas) Indirect 0.44
Direct -0.12
Contiguity Indirect -0.04
Total -0.16
Defense Burden;_; Dircct 014
Contiguity + Defense Indirect 0.05
Total -0.09

Note: SAR Model 1 uses a binary, un-row-standardized contiguity weights matrix.
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Table 9: Conditional SLX Models of Neighborhood Effects on Defense Burdens

Model 4 Model 5 Model 6
Spatial Estimates (6)
Contiguity x Interstate War;_1 0.16
(0.12)
Contiguity2 X Interstate War;_1 0.02
(0.05)
Contiguity3 X Interstate War;_1 0.002
(0.01)
Region x Civil War;_q -0.16 -0.008
(0.10)  (0.03)
Region (Middle East) x Civil War;_; -0.06
(0.13)
Region (Africa)x Civil War;_ 0.23**
(0.11)
Region (Asia)x Civil War;_1 0.11
(0.12)
Region (Americas)x Civil War;_; 0.21*
(0.12)
Region x Interstate War;_1 -0.001 -0.05
0.02)  (0.05)
Region (Middle East) x Interstate War;_; 0.12*
(0.07)
Region (Africa) x Interstate War;_1 0.06
(0.05)
Region (Asia) x Interstate War,_; 0.02
(0.06)
Region (Americas) x Interstate War;_; 0.06
(0.10)
Non-Spatial Estimates ()
Civil War;_1 -0.417**  -0.39%** -0.427%%*
(0.15) (0.15) (0.15)
Interstate War;_1 0.44*** 0.44*** 0.24
(0.15)  (0.15)  (0.21)
Total Population (Logged);—1 0.04** 0.04** 0.03*
(0.02)  (0.02) 0.02)
Annual Trend -0.003*  -0.004"*  -0.004"**
(0.002)  (0.002)  0.002)
1992 -1.00***  -1.04***  -1.05***
(0.20)  (0.20)  (0.20)
Defense Burden;_ 1 -0.12%*  .0.12%**  -0.12%**
(0.006)  (0.006)  (0.006)
ADefense Burden;_1 -0.15***  -0.15***  -0.15***
(0.01)  (0.01)  (0.01)
Constant 0.22 0.24 0.23
0.17)  (0.17)  (0.17)
N 7,266 7,266 7,266

Note: Models include regional fixed effects.
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then it is generally correct to estimate an SAR. If, however, the higher-order effects are based on spatial
clustering in the observables, then the SLX can be modified to estimate higher-order effects. In Model
6 (Table 9) we add two higher-order effects to represent the possibility that changes in defense burdens
by second- and third-order contiguous neighbors might have an effect on the focal state. Adding the
two higher-order effects SLX variables has the benefit of allowing for feedback effects (as shown in the
direct effects for second- and third-order contiguity in Table 2), but has the downside of increasing multi-
collinearity (both higher-order effects have variance inflation factors above 11). In this case, all three SLX
variables are positive, and it is clear that the positive effects decline considerably at each additional order of
contiguity. F-tests suggest that we cannot reject the null hypothesis that the two higher-order coefficients
are jointly equal to 0, which means that the specification with first-order contiguity is sufficient.

Figure 1: Total Effects of Interstate War,_; across European States in 2007 (Model 6)
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Note: The values represent the total effects—including direct and indirect effects—for each European state (i.c., the total in
each row of the partial derivatives matrix), given an interstate war in every European state in 2007. Russia, which is omitted
for graphical purposes, has the largest total effects of any European state (2.74).

While the F-tests suggest that the specification with the first-order contiguity is sufficient,” it is in-
structive to graphically explore how the W (i.e., the distribution of contiguous neighbors in this model)
influences the size of the indirect effects. In Figure 1 we depict the average total effects of interstate war,
for all European countries in 2007 (except for Russia for illustration purposes). There is a great deal of
variation in the size of the effects, and that variation is largely consistent with the historical record detail-
ing countries’ responses to interstate wars. For example, the countries that have the largest total indirect

9F-tests suggest that we cannot reject the null hypothesis that the two higher-order coeflicients are jointly equal to 0.
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effects are also those with the most contiguous neighbors (Russia, Germany, Poland, Ukraine, and Aus-
tria).!® On the other hand, countries like Malta, Cyprus, United Kingdom and Ireland have the smallest
total effects.

10This is a function of our choice to not row-standardize the weights matrix.
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