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Online Appendix

Additional Experiments

In this Online Appendix we explore the results of other Monte Carlo experiments that we

reference in the manuscript. We first detail how including irrelevant TLSLs potentially

leads to bias in the other covariates and then present the inferential consequences to in-

correctly specifying policy diffusion occurring through multiple channels.

Bias in Other Covariates

Recall that for each scenario we estimate two models, both of which include an irrelevant

TLSL: the “underfitted” model omits a key variable from the model specification, and

the “overfitted” model includes that relevant variable. Figure A.1 shows the TLSL false

discovery rate for scenarios 2 and 3 in the left column and the coefficient bias for X1 (β̂1)

and X2 (β̂2 in Scenario 2, θ̂WZ in Scenario 3) as measured by the root mean square error

(RMSE)1 for the two scenarios in the right column.

1We found the RMSE using
√∑N

i=1(ŷ−y)2

n , where i is an individual simulation, N is the total number of

simulations, y is the actual parameter value from the DGP and ŷ is the estimated value from the regression.



The under- and overfitted (or, “overestimated”) models suffer from different prob-

lems. As we describe in the manuscript, the TLSL false discovery rate for the under-

estimated models is higher than indicated by its p-value. The problem is worse when

autocorrelation (φ in scenario 2) or spatial clustering (θWZ in scenario 3) increases. Includ-

ing the omitted autoregressive and/or spatially clustered variables in the overestimated

models, on the other hand, returns the TLSL false discovery rate to a level closer to that

suggested by the p-value.

There is generally not much bias in the non-TLSL variables’ coefficients in the under-

estimated models, regardless of the degree of autocorrelation or spatial clustering in the

omitted variable. In some cases, however, the non-TLSL variables’ coefficients become

biased. The coefficient for the autoregressive X2 variable in Scenario 2 is particularly af-

fected by including a spurious TLSL. Keep in mind that β2XAR is part of the DGP, so this

suggests that including an irrelevant TLSL produces inaccurate coefficient estimates for

the variables that were indeed part of the data generating process. The coefficient for the

non-autoregressive/non-spatially autocorrelated X1 variable in Scenario 3 is also persis-

tently biased in both the under and overestimated models, as was θ̂WZ for higher values

of θWZ , though to a smaller degree.

Policy Diffusion through Multiple Avenues

One of the strengths of the SLX model is the ability to easily and efficiently incorpo-

rate spatial diffusion through multiple connectivity matrices. In the case of temporally-

delayed policy diffusion (described in the manuscript), this would occur through multiple

TLSLs. For example, one could envision that governments would emulate tax policy of

those that are more proximate and that have similar ideologies. In this case, the previous

average of neighbors’ tax rates would be weighted by both contiguity and ideological

similarity, and one could include two TLSLs to reflect the alternative paths of policy dif-

fusion.

2



Figure A.1: TLSL False Discovery Rate (Left) and Coefficient Bias (Right) for various φ
(Scenario 2) and θWZ (Scenario 3)
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The first row of plots shows results from Scenario 2. The second row is from Scenario 3.

It is clear that if tax rates are the end result of multiple avenues of policy diffusion, then

it is best to measure those avenues correctly and include them in the model specification.

In reality, however, it is often not clear whether there are multiple channels of diffusion or

if the correct channels have been included. To assess the consequences of these types of

model misspecification, we produce another series of Monte Carlo experiments. We begin

with a data-generating process that includes an independent variable (X) that influences
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the outcome (y) directly (through β) and indirectly (through the two weights matrices,

W1 and W2, and their effects, θ1 and θ2):

y = Xβ + θ1W1X+ θ2W2X+ ε (A.1)

You may notice that Equation A.1 is a more general version of the TLSL model presented

in the manuscript. X is drawn from a normal distribution (X ∼ N (0, 2)), and the pa-

rameters are fixed at β = 1, θ1 = 0.1 and θ2 = 0.25. We produce 1000 simulations of

500 observations each. Since the primary driver in coefficient bias in the omitted variable

case is correlation with the omitted variable, we create W1, W2 and W3 (described be-

low) so that they vary in network correlation (from -0.6 to +0.6). We can use the varying

degree of correlation to explore how misspecifying the avenues of diffusion influences

the inferences one derives from the SLX model.

When the outcome is the result of multiple avenues of diffusion, what are the con-

sequences of only modeling one avenue of diffusion? How does that change our infer-

ences about the pattern of policy diffusion? In other words, if Equation A.1 depicts the

data-generating process, then what happens when we estimate the following and omit a

relevant TLSL (θ2W2X)?

y = Xβ + θ1W1X+ ε (A.2)

This would be a scenario where tax rates depend on the weighted average of tax rates

among neighbors—both proximate and ideological—but only the proximate neighbors

are included in the model. This is a classic case of underfitting the model by omitting a

relevant variable.

As Gujarati (2003: 510-513) demonstrates, the severity of the consequences depend on

the amount of correlation between W1X and W2X. If the omitted variable is not corre-

lated with the regressor (or has no effect on y), then there is only a small impact on model
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efficiency. In studies of policy diffusion, it is unlikely that policy diffusion would occur

through multiple avenues that are completely distinct and uncorrelated with each other.

A more probable consequence of omitting the relevant TLSL is that the effect of θ1 will

be biased (because some of the effect of W2X will be falsely attributed to W1X). The

direction of the bias is a function of the omitted coefficient, θ2 = 0.25, and the degree of

correlation between W1X and W2X.2 Since θ2 = 0.25 across all simulations, the bias will

be negative for those scenarios with negative network correlation, and positive for those

scenarios with positive network correlation. Another troubling consequence is that the

standard errors are biased estimates (though the direction of the bias depends on the rel-

ative importance of the regressors, see Gujarati 2003: 512), which means that confidence

intervals will be misleading.

We first compare the performance of Model 1 (“correct” model shown in Equation A.1)

to Model 2 (omits a relevant TLSL, shown in Equation A.2) in terms of mean squared error

(MSE). As MSE is a measure of both bias and efficiency, lower values indicate better model

specification. Figure A.2 shows that Model 1 provides lower levels of MSE than Model 2

across all degrees of network correlation between W1X and W2X. More intuitively, it is

useful to see how omitting a relevant TLSL will influence the inferences that one makes

about policy diffusion. In Figure A.3 we show the median value of θ1 (represented by the

dot) and lower and upper 90% confidence intervals across values of network correlation

between W1X and W2X. The horizontal dashed line provides the true value of θ1. The

only scenario where the confidence intervals would overlap the true value of θ1 is when

the network correlation is 0. In all other cases, the effect of θ1 is statistically different from

the true effect. Particularly problematic—though potentially rare—is the scenario with

a correlation of -0.6. If the two avenues of diffusion are negatively correlated with each

other, then omitting W2X will force the effect of θ1 to be negative (recall that it is actually

0.1). These experiments show that scholars should specify multiple diffusion channels if

2More specifically, it is the slope coefficient in the auxiliary regression of W2X on W1X.
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necessary, and that the degree of bias will increase as the correlations between diffusion

channels increases.

Figure A.2: Mean Squared Error of θ1 for Models that Include (Model 1) and Omit (Model
2) a Relevant Avenue of Diffusion (W2X)
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What if we are wrong about the particular channel of policy diffusion? If there are

multiple channels of policy diffusion, but we mistakenly include a channel with no direct

effect on the outcome, what are the consequences?

y = Xβ + θ3W3X+ ε (A.3)
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Figure A.3: Median and 90% Confidence Intervals of the Effects of θ1 Compared to the
True Value (θ1 = 0.1) in Model 2
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This would be a scenario where tax rates depend on the weighted average of tax rates

among proximate and ideological neighbors but we mistakenly identify neighbors as

those states that have similarly-composed economies. This is a classic case of both un-

derfitting the model (by omitting the two relevant TLSLs) and overfitting the model (by

including the irrelevant TLSL). The consequences of this are more severe than the previ-

ous example of model misspecification because it involves both types of model misspeci-

fication.
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To explore the consequences of incorrect specification of the avenue of policy diffu-

sion, we create another weights matrix, W3, and we vary the degree of network correla-

tion between it and W1 (the correlation between W3 and W2 is held constant at +0.1).

We expect that the SLX will falsely reject the true null hypothesis of no effect of W3X (or

that θ3 = 0) at unacceptably high levels, depending on the degree of network correlation

between both omitted TLSLs.

Figure A.4: False Discovery Rate for θ3 in a Model that Omits Two True Avenues of Policy
Diffusion
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In the vast majority of cases, including an irrelevant TLSL in the place of the relevant

avenues of policy diffusion will cause scholars to falsely conclude that policy diffuses
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through that avenue. The one exception is when the network correlation between W1X

and W3X is -0.2, and this is due to chance; this negative correlation is being cancelled out

by the positive correlation (+0.1) between W2X and W3X, thus lowering the false dis-

covery rate to approximately 10% (acceptable given the 90% confidence level). Overall,

incorrectly specifying the avenue of policy diffusion—especially with one that is corre-

lated with the true avenues—will result in incorrect inferences about the spatial diffusion

process.

spatialWeights

This project has shown the importance of testing for spatial autocorrelation before includ-

ing a temporally-lagged spatial-lag (TLSL) in a regression model. While there is abundant

statistical software to test for spatial autocorrelation, it is not easy to do so with time-series

cross sectional data on a per-time interval basis.

We introduce the spatialWeights package for the R programming language to

make it easy for researchers to calculate spatial weights for TSCS data and report spa-

tial clustering test statistics.

The following is a simple demonstration of the package’s syntax for creating a TLSL

and reporting per-time-period Moran’s I tests using simulated data that exhibits strong

spatial autocorrelation:

# Create simulated TSCS data

sims <- expand.grid(ID = letters, year = 2012:2017)

sims$located_continuous <- nrow(sims):1

sims$y <- nrow(sims):1 - 200

# Find TLSL weights and Moran’s I for continuous simulated data

df_weights_cont_tlsl <- monadic_spatial_weights(

9



df = sims, id_var = ’ID’,

time_var = ’year’,

location_var = ’located_continuous’,

y_var = ’y’, mc_cores = 1, tlsl = TRUE)

This call returns both a data frame with the calculated spatial weights (note: only showing

the first six rows):

ID year sp_wght_located_continuous_y lag_sp_wght_located_continuous_y

1 a 2010 -19825 NA

2 a 2011 -28275 -19825

3 a 2012 -36725 -28275

4 a 2013 -45175 -36725

5 a 2014 -53625 -45175

6 a 2015 -62075 -53625

and prints to the console the Moran’s I for each time-period:

Continuous location variable detected. Proximity found using

method = euclidean.

2010: Moran’s I p-value: <2e-16

2011: Moran’s I p-value: <2e-16

2012: Moran’s I p-value: <2e-16

2013: Moran’s I p-value: <2e-16

2014: Moran’s I p-value: <2e-16

2015: Moran’s I p-value: <2e-16
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