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Overview

In this document I provide more in-depth support for a series of claims that I make in the manuscript
related to the relationship between functional form and long-term effects (LTE) with a variety of
estimation techniques, Monte Carlo experiments examining the performance of estimators (with
and without non-proportional hazards), the effects of compression on substantive effects, and ad-
ditional analyses of Clare (2010).

Illustration of Long-Term Effects with Hazard Rates of Various
Shapes

To demonstrate how the shape of long-term effects is related to the underlying hazard rate, I estab-
lish four scenarios of underlying hazard rates. For guidance, I follow the approach taken by Carter
and Signorino (2010) and establish four scenarios based on the relationship with time: increasing,
decreasing, and two scenarios of non-monotonic relationships.

I first simulate four data sets of 1000 observations, with the binary dependent variable based
on an explanatory variable (x) drawn from a uniform distribution, ∈ [−2, 2] (β = 1) and a hazard
rate with the logistic link function:

Pr(yi,t = 1|xi,t) =
1

1 + e−(xi,tβ+h(t))
(1)



I depict these four hazard rates in Figure S.1. The positive and negative hazards are derived
from a Weibull distribution, whereas the two non-monotonic hazards are derived from a parabolic
and log-logistic distribution, respectively.

[Figure S.1 about here]

Recall that there are two obvious approaches (Hanmer and Kalkan 2012) to calculating the
long-term effects, given the possibility of hyper-conditionality. The first of these is to set up mul-
tiple simulation scenarios to demonstrate the variability of substantive effects at different baseline
probabilities. The second is to calculate long-term effects for all observed values and then average
those values to produce an “average” long-term effect. Both of these techniques are shown in the
manuscript.

The first functional form is negative and is probably the most common pattern of temporal
dependence, simply because models of civil wars and international conflicts typically follow these
patterns. In Figure S.2 I show four long-term effects calculated at different scenarios of t. For the
four scenarios, I change the value of time in the following formula:

LTEt+1
XC

= Pr(ŷ = 1|XC2, time = 0)− Pr(ŷ = 1|XC1, time = tXC
) (2)

For example, in the first scenario (tXC
= 1) the long-term effect at time t+ 1 is the probability

immediately following the event occurring at time t (time = 0) compared to the probability for the
scenario plus 1 (1). At time t + 2, I compare the probability at time 1 to 2, and so on. The second
scenario (tXC

= 5) presents a larger long-term effect at time t+1 because it is the probability when
time = 0 compared to time = 5. The third and fourth scenarios have even larger long-term effects
at time t + 1 because they compare the probability at time = 0 to time = 10 and 20, respectively.
The ranges of the x-axes of these latter figures are smaller so that we do not extrapolate beyond the
maximum value of time.

[Figures S.2-S.5 about here]

The first inference from the case with negative duration dependence (FigureS.2) is that the
shape of the long-term effect is related to the underlying hazard rate. Since the hazard rate is
linearly decreasing (up to about t = 15), then the long-term effect for those time periods will
be positive. The second inference is that the magnitude of the long-term effects depends on the
simulation scenario, and more specifically, the value of time in the simulation scenario. In the
case of negative duration dependence, higher values of time in the simulation scenario (tXC

) will
produce more positive LTEs because the hazard rate when time = 0 is much larger than the hazard
rate at higher values of time. We can also infer that the long-term effect of the event has a lasting
effect that elevates the risk of another event for nearly 15 years.

In Figure S.3 we depict the same scenarios for the case of positive duration dependence. Since
the underlying hazard rate rises with time (Figure S.1), occurrence of the event at time t decreases
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the risk of another event. This decrease is statistically significant (for the tXC
= 1 scenario) after

four time periods and the negative LTEs grow stronger with time.

Figures S.4 and S.5 depict LTEs for non-linear functional forms. Even though the functional
forms are more complex than the simple ones derived from the Weibull model, the figures are
interpreted in a similar manner. Moreover, the interpretation of the long-term effects is simple
if one considers that the sign, shape and magnitude of the LTEs are the result of subtracting the
probability at a particular value of time from the probability when time = 0. For example, in the
non-monotonic 1 functional form, tXC

= 1 scenario, the underlying hazard rate is highest at time
time = 1, so the long-term effect will be positive until the hazard becomes flat.

[Figures S.6-S.9 about here]

Figures S.10-S.13 compare two versions of depicting LTE with different functional forms.
While the right panels appear similar, they differ in one notable way. They provide greater con-
text for the LTE because they list the value of t in the baseline scenario. The left panels ex-
plicitly provide the two values that make up the moving differences depicted in the right panels:
Pr(ŷ = 1|yt = 1,XC) and Pr(ŷ = 1|yt = 0,XC). The vertical confidence intervals are slightly
jittered on the x-axis to allow for easy comparison of the scenarios. The first non-monotonic sce-
nario (Figure S.8) depicts a particularly interesting LTE that fluctuates from being negative to not
statistically different from zero and then positive.

[Figures S.10-S.13 about here]

Monte Carlo Experiments

Long-term effects—much like other quantities of interest—“assume that the statistical model is
identified and correctly specified” (King, Tomz and Wittenberg 2000: 351). More specifically,
correct estimation of LTE depends on both the estimate of the coefficient of interest (β) and the
hazard rate (βt). However, it is not yet clear how inaccurately specifying the temporal dependence
influences our inferences regarding those coefficients and the calculation of LTE.

Scholars face a multitude of choices when specifying the variables in the hopes of modeling
temporal dependence, ranging from temporal dummy variables to cubic polynomials to a variety
of splines. I will show that this choice has minimal consequences for the estimation of LTE; on
the whole, as long as one’s inferences are limited to the common values of t and the hazard rate
is estimated in a reasonable fashion, there are few differences in LTEs across these estimation
techniques. In this section I will describe the Monte Carlo experiments and highlight a number of
important findings that illuminate the use of LTE in practice.

My goal is to illustrate the performance of a variety estimation techniques to model temporal
dependence under different conditions. I generate a variety of data sets ranging in size (N ∈
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{1000, 5000, 10000}) with the binary dependent variable based on an explanatory variable (XK)
drawn from a uniform distribution from -2 to 2 (βXK

= 1), a negative constant (βC ∈ {−3,−2},
to get a variety of frequencies of events) and a hazard rate with the logistic link function:1

Pr(yi,t = 1|xi,t) =
1

1 + e−(xi,tβ+h(t))
(3)

I create four functional forms of hazard rates based on their relationship with time: increasing,
decreasing, and two scenarios of non-monotonic relationships (see Figure S.1).

We can assess the performance of these functional forms under different hazard rates with two
simple criteria that directly inform the calculation of LTE: bias in the coefficient of the variable of
interest (βXK

), and by comparing the estimates to the true hazard rate at different values of t.

[Tables S.1-S.4 about here]

In Tables S.1-S.4 I show the performance of five estimation techniques: exponential (flat, or no
hazard), time dummies (Beck, Katz and Tucker 1998), cubic polynomials (Carter and Signorino
2010), B-splines located at three knots (1, 4, and 7, to compare to the default from many statistical
programs), and automated smoothing splines (via generalized cross-validation). In the first two
columns I show the absolute bias and mean squared error of βXK

= 1. In the final two columns I
assess whether the standard errors accurately portray the variability of the estimate by comparing
the mean standard error of βXK

to the standard deviation of the 1000 estimates of βXK
. Better

estimators of βXK
are those that have lower values of bias and where the average standard errors

are closer to the standard deviations of the estimated βXK
(Carsey and Hardin 2014: 84-96).

The evidence is clear; failing to correctly model temporal dependence—in a variety of func-
tional forms—biases the coefficient for the explanatory variable of interest.2 In nearly every single
scenario under different functional forms, the exponential distribution has the highest absolute bias
and mean squared error. While the coefficients are biased downward, the similarity of the average
standard error and the standard deviation of the coefficients means that the standard errors—in
these circumstances3—reflect the true variability of the estimates.

Morever, as long as one specifies the temporal dependence in a reasonable fashion (thus ex-
cluding the exponential functional form, which assumes constant hazards), then one is likely to
retrieve the actual estimate of βXK

, on average. Carter and Signorino (2010: 284; see also Box-
Steffensmeier and Jones 2004: 91) stress this point as well, but it is reassuring that the inference
from the key explanatory variable will be accurate as long as some care is taken in model specifi-
cation. There is little difference between the estimation techniques in terms of bias and standard
errors, so one will have to look elsewhere to adjudicate between the techniques.

1I follow the lead of Carter and Signorino (2010: 283) in designing these experiments.
2This is consistent with omitted variable bias present in probit models that ignore temporal dependence (Yatchew

and Griliches 1985).
3Though this might be a function of the particular level of temporal dependence (which does not vary) in these

experiments; other scholars find that the standard errors are often much smaller than they ought to be (Beck, Katz and
Tucker 1998: 1263).
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Of course, this is not to say that the LTE will be accurate under all circumstances, as this
depends on appropriately modeling the underlying hazard rate as well. By comparing the true
hazard rate to the estimates from the various techniques, we can assess whether the estimates
contain large amounts of bias.

[Figures S.14-S.17 about here]

Figures S.14-S.17 provide these comparisons for four different data sets based on sample size and
size of the constant. The average hazard rates are quite close to the true hazard rate over the
entire period for the scenarios where the constant is -3 (Figure S.14 and S.16). Furthermore, the
estimation techniques do a solid job of picking up non-linearities in the hazard when they occur.
The estimates reflect the slight increase at higher values in the first non-monotonic scenario and
the curvilinear shape at the lower values of the second non-monotonic scenario.

More generally, the estimates are closer to the true hazard rate at lower values of t. As t
increases, the estimates stray further from the true hazard and this is exacerbated in two situations.
First, when the constant increases (from -3 to -2) there is a higher percentage of 1s in the sample
(from about 15% to about 40%), at which point there is a greater divergence from the true hazard
at lower values. Second, some techniques provide better estimates than others. Cubic polynomials
do a particularly poor job at higher values of t and they often depict non-linearities in the hazard
rate that are not there (as shown in the Non-Monotonic 2 scenario in Figure S.15).4

This is easy to see in Figures S.18-S.21 where I depict the true hazard rate compared to the
1000 estimates in the scenario where all the techniques performed most admirably (i.e., N=1000,
βC=-3).

[Figures S.19-S.21 about here]

At low values of t the hazard rates have much less variation on average than at higher rates. One
can therefore be much more confident that an estimate at lower, more common values of t will be
more efficient.

In practice, however, there is still reason to be optimistic about the use of these techniques
to address temporal dependence. First, BTSCS models with temporal dependence often explain
rather rare events such as civil wars or interstate conflicts, and these data sets are more similar to
the scenarios depicted in Figures S.14 and S.16 than S.15 and S.17. In situations where there is
a lower percentage of 1s in the sample, scholars should have more confidence that a reasonable
technique will provide a close estimate of the true hazard rate. Second, in the simulated data sets,
values of t that are larger than about 20 are relatively rare (all of the data are right-skewed), so it is
reasonable to expect that our estimates of the hazard rate under more anomalous situations would
be potentially wrong. If scholars are cautious about drawing inferences from observations that are
not representative of the entire sample, then they will focus their inferences on low to moderate
values of t. In this range of values the estimates are quite close to the truth.

4These poor estimates occur even when one accounts for possible numerical instability problem by dividing the
values of t by 100 before squaring and cubing them (Carter and Signorino 2010: 283).
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Long-Term Effects and Non-Proportional Hazards

A very real possibility when dealing with BTSCS models is that the effects of an explanatory
variable may fluctuate as a function of time. In event history analysis, much has been written about
the consequences of violating the proportional hazards assumption on model estimation (Box-
Steffensmeier and Jones 2004) and interpretation (Licht 2011). In the BKT approach, models that
only include the time variables (e.g., t, t2 and t3) assume that the effects of XK on Y do not vary
meaningfully across time. Examples of research questions where we might unknowingly violate
this assumption abound, especially in international relations. One could imagine that the effects of
an unresolved territorial dispute would have the largest effect immediately following the previous
conflict, and that this effect would shrink with time. Appropriate modeling of non-proportional
hazards would entail interacting the offending variable with the measures of time. It is not clear,
however, how the presence of non-proportional hazards complicates the calculation and depiction
of long-term effects. In the manuscript I presented an example of how to depict the long-term
effects, and this section addresses the remaining component—how violating the NPH assumption
affects the calculation of LTE.

I repeat the data-generating process outlined in the above section for the case with 1,000 sim-
ulations and a constant of -3, which causes about 16-25% of the outcomes to be coded as 1. In
addition to having similiar features as most international conflict data sets, this scenario represents
favorable conditions to assessing the effects of NPH since the estimation techniques performed
well (see above). The crucial exception is that the influence of XK now varies as a function of t
(XK × t), and the influence varies across scenarios: (βXt ∈ {0.2, 0.1, 0.04, 0.02}). In the case of
negative non-proportional hazards these coefficients are negative.

Tables S.5 and S.6 detail the performance of the βXK
and its standard error across the various

strengths of non-proportional hazards and estimation techniques.

[Tables S.5-S.6 about here]

There is little difference in the performance across estimation techniques (though the automated
smoothing splines appear to be slight favorites). The bias in βXK

tends to be highest when the
non-proportional hazards are strongest (i.e., at βXt = −0.2) for the negative non-proportional
hazards case (Table S.6) but not for the positive case (Table S.5). Overall, it looks as though if
one estimates an additive model in the face of non-proportional hazards there will be some bias in
βXK

, but it does not look consequential since the average βXK
is still quite close to 1. It remains

to be seen whether the calculation of the hazard rate and the effects of XK across time will be as
forgiving.

Figure S.22 provides the average hazard rates of the four estimation techniques from the ad-
ditive (i.e., proportional hazards) model compared to the true hazard rate (with a slight degree of
non-proportionality, βXt=0.4 and -0.4, respectively).

[Figure S.22 about here]
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As expected, the slight non-proportionality is not enough to make the additive estimates diverge
substantially from the true hazard. This is especially the case at low values of t.

Of course, the results from Tables S.5-S.6 and Figure S.22 provide only a snapshot of how the
BKT techniques perform in the face of non-proportional hazards. This is because Tables S.5-S.6
and Figure S.22 illustrate performance of the estimates of βXK

and h(t) under the unique circum-
stances when t = 0 and XK = 0, respectively (Licht 2011). Scholars are not usually concerned
with making inferences about such a small subset of cases. Instead, scholars are interested in the
inferences regarding how the effects of XK change as a function of t. This inference is more
clearly illustrated by examining the average predictive differences (APD)—the average change in
the probability that ŷ = 1 given an increase in XK from 0 to 1—across values of t.

[Figures S.23-S.24 about here]

Figure S.23 (S.24) shows the APD across values of t for four estimation techniques under
negative (positive) duration dependence with varying levels of positive (negative) non-proportional
hazards. Keep in mind that these APD are estimated from models that ignore the non-proportional
hazards that are present in the data. Thus, it is admirable that the additive models capture some
of the changing influence of XK over time. In Figure S.23 this is evident by the slight increase
in the APD at the higher values of t. This is even more obvious in Figure S.24 where there is
enough variation to have estimates across a longer range of t. All four estimation techniques pick
up on the negative non-proportional hazards which eventually decrease the magnitude of the APD
at moderate values of t.

These findings suggest that there is little harm in estimating additive models that ignore non-
proportional hazards. Of course, these results are somewhat limited to the unique circumstances
present in this batch of experiments (i.e., monotonic hazards with slight non-proportionality). If
one believes that there are non-proportional hazards present, and if one’s concern is on estimating
the effects of the variable with non-proportional hazards, it still makes more sense theoretically
to estimate the interactive model. Given the relative simplicity of estimating and testing for non-
proportional hazards (particularly in the case of cubic polynomials), it is extremely short-sighted
to move forward without a full examination of one’s data. Indeed, this is the only way to ensure
that the non-proportional nature is properly modeled.

Government Fractionalization and Hyper-Conditionality

Based on the statistical significance of the coefficient for ideological distance, Clare finds support
for his “overall theoretical premise that ideological outlier parties can use their credible threats
to defect from the coalition, and the increased bargaining leverage these threats provide, to shift
a government’s foreign behavior toward their desired policy positions” (2010: 981). To further
demonstrate the variation in conflict behavior within coalition governments, Clare compares the
probability of dispute initiation of a “fractionalized coalition” (i.e., one whose values of ideological
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distance vary) to a “cohesive coalition” and a single-party majority government. I recreate these
figures in Figure S.25, and include a rug plot of the distribution of ideological distance within the
sample.

[Figure S.25 about here]

He points out that “fractionalized coalitions with left-wing outlier parties are less likely to
initiate disputes than either cohesive coalitions (panel a) or single-party governments (panel b).
Alternatively, those with a far right-wing outlier party are more likely to initiate conflicts than their
cohesive coalitional or single-party counterparts” (Clare 2010: 981). These two probabilities are
statistically different (at the 90% confidence level) at values of ideological distance less than -108
and greater than 92 for the left panel, and less than -115 for the right panel. Since there are only
14 observations in the data set (Greece 1989 and Denmark 1957-1960) that have these values, I
would caution scholars from making inferences about these relatively rare values.

Substantive Effects and Scenario Selection

The degree of hyper-conditionality present in the two panels in Figure 4 in the manuscript provides
a warning against selecting only one scenario to depict substantive effects.5 It is important to note
that the effects of ideological distance vary much more across the values of peaceyears (i.e., along
the x-axis) than across observations with the same value of peaceyears. Thus, the magnitude
of the first difference depends much more on the values of the temporal dependence variables
than the geostrategic control variables such as military capabilities, alliances or contiguity.6 It is
therefore evident that the practice of interpreting the results based on one scenario can produce
widely varying predicted effects.

The statistical significance of changes in key theoretical variables will also vary based on the
values of the simulation scenarios. Ai and Norton (2003) show that the first difference of a variable
may only be statistically significant for a subsection of the observations. The next step in exploring
hyper-conditionality is to determine whether the statistically significant observations were concen-
trated in certain ranges of values for peaceyears. Even though the coefficient for ideological dis-
tance is statistically significant at the 99% confidence level, due to compression, only about 22%
of the observations have values of Y ∗ that are close enough to the center of the cumulative density
function to actually produce a statistically significant difference. Indeed, all of the observations
where the change in ideological distance is statistically significant (at the 95% confidence level)

5In his project, Clare (2010: 981) interprets the effects of ideological distance on the probability of dispute initia-
tion for a scenario where all the control variables (including peaceyears) are held at their means.

6To get a sense of the variation in the first differences that is solely explained by temporal dependence, I regressed
first differences on the three peaceyears variables (shown in the Appendix file). The adjustedR2 is 0.84, which supports
my contention that the vast majority of variation in the first difference is attributable to the values of the temporal
dependence variables. Furthermore, a heteroskedastic regression model points to the error variance decreasing as a
function of peaceyears (β=-0.03, p-value < 0.001), which suggests that there is a great deal more variation in the
possible effects of ideological distance when conflict is in the recent past.
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occur within seven years since the previous dispute. This by itself is not particularly surprising,
as it places unreasonable demands on the theory that the effects are statistically significant in each
and every case. At the same time, this sort of exploration might lead to inferential improvements
by encouraging a reanalysis of the conditions under which these effects reach conventional levels
of statistical significance.

Given the nonlinear nature of probit models, and the substantial effects of temporal depen-
dence variables, it is instructive to examine whether the differences between scenarios are more or
less pronounced for different conflict histories. This will help determine whether different types
of coalitions consistently behave differently, or if these differences are merely a product of the
scenarios chosen to calculate the effects. In Figure 6 in the manuscript I purposely identify four
scenarios where the baseline probability varies considerably to demonstrate the influence of com-
pression on substantive effects. The values of the variables depicted in those scenarios are provided
in Table S.7.

[Table S.7 about here]

Model Fit

The model of dispute initiation that Clare (2010) provides fits the data quite well, with an ex-
pected percent correctly predicted (ePCP) of 94.6%. Figure S.26 demonstrates how well the model
performs in terms of correctly predicting disputes and non-disputes across different probability
thresholds (King and Zeng 2006). The area under the curve (AUC) is 0.77, with a 95% confidence
interval of [0.71, 0.82] (Weidmann and Ward 2010).

[Figures S.26-S.27 about here]

Figure S.27 provides the separation plot based on the predicted probabilities and observed
outcomes (Greenhill, Ward and Sacks 2011).

Non-Proportional Hazards in Clare (2010)

In the manuscript I claim that the substantive effects of government fractionalization on dispute
initiation are highly dependent on the values of the temporal dependence variables in the simulation
scenarios. In order to claim that these effects are due to the methodological artifact of compression,
I need to eliminate the possibility that it is actually due to non-proportional hazards. If the effects of
government fractionalization vary across time since previous dispute due to an explicit interactive
relationship and I omit the interactions, then I am likely to observe substantial variability.

To ensure that the variability of the substantive effects are caused by compression rather than
non-proportional hazards, I interact the peaceyears cubic polynomials with government fraction-
alization. I present the results in Table S.8.
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[Table S.8 about here]

None of the interactions are statistically significant, which suggests that the effects of govern-
ment fractionalization do not vary as a function of time since previous dispute. More importantly,
I fail to reject the null hypothesis that the three interactions are jointly equal to 0 at conventional
levels of statistical significance using both the Wald test (χ2

3 = 2.2, p-value=0.53) and likelihood
ratio test (χ2

3 = 2.6, p-value=0.46). Thus, it is clear that the variability in the substantive ef-
fects of government fractionalization in Clare (2010) is due to compression rather than unmodeled
non-proportional hazards.

Survey of Temporal Dependence Variables in Top Journals

I conducted a survey of all the articles published in the American Political Science Review (through
February 2014), American Journal of Political Science (through July 2014), Journal of Politics
(through April 2014) and International Studies Quarterly (through June 2014) that cited Beck,
Katz and Tucker (1998). For each article, I noted the type of temporal dependence variable (i.e.,
dummy variables, splines, polynomials, etc), whether they were statistically significant, the manner
of interpretation (if any), the quantities of interest of key variables (and the simulation scenarios
used), and whether they discussed and interpreted long-term effects.

Out of 178 articles, 131 employ some version of temporal dependence variables. Of these, only
two discuss the possibility of lasting effects of the independent variables (Bennett 2006; Beardsley
2008), but neither calculates the actual long-term effects. Furthermore, even though compression
changes the size of the quantities of interest, only 4.7% (or 6 out of 129) show how the calculated
quantities of interest vary across multiple simulation scenarios.

Variability of Substantive Effects

In the manuscript I make two claims regarding the variability of substantive effects for BTSCS
models with varying ranges of probabilities. The first claim is that the average size of the change
in predicted probabilities will be largest at probabilities closer to 0.5. The second claim is that the
variability of the substantive effects depends on the range of predicted probabilities.

The change in predicted probabilities for a 1-unit increase in some variable, xk, is a function of
both the size of the effect, βxk , and the location of the observation along the CDF (which determines
the probability that y = 1). The formula for this change is the following (Agresti 1996: 104):

∆Pr(y = 1|∆xk) = ∆xkβxkPr(y = 1)(1− Pr(y = 1)) (4)

To demonstrate how the range of proabilities influence the size of these changes, I set up a series
of simulations of 2000 observations drawn from a uniform distribution of probabilities. Thus, the
sample size and standard deviations are nearly constant across simulations. I then calculate the
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changes with Equation 4 for a βxk = 1. I present the distributions of the substantive effects for the
various simulations as box-whisker plots in Figures S.28 and S.29.

[Figures S.28-S.29 about here]

Figure S.28 illustrates these two claims about variability. First, the average change in predicted
probabilities of a 1-unit shift in x, given a βxk = 1, is much higher for the range of probabilities
from 0.4 to 0.6. As the range of probabilities shifts farther away from 0.5, the average magni-
tude decreases. Second, the variability of these changes is much smaller in the middle range of
probabilities ([0.4, 0.6]) compared to those farther away from 0.5. Since the middle range of prob-
abilities is a range of values with a nearly linear CDF, the first derivative of the CDF is going to be
nearly constant. As the range of values shifts away from the center, the CDF becomes less linear,
indicating that that the standard deviation of the effects is larger.

Figure S.29 offers a few more simulations based on a larger range of overlapping probabilities.
First, it is clear that scholars depicting substantive effects with simulation scenarios that generate
probabilities near 0.5 (such as those in the [0.3, 0.7] range) will demonstrate, on average, larger
effects. Second, the variability within these ranges increases as one shifts away from 0.5. Essen-
tially, this identifies the types of political science models that are most vulnerable to high levels
of variability. Models of relatively rare ([0.0, 0.4]) or likely ([0.6, 1.0]) phenomena will be much
more dependent on the simulation scenario chosen because of their high standard deviations.
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Tables & Figures

Figure S.1: Four Functional Forms of Duration Dependence
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Figure S.2: Long-Term Effects for Four Scenarios for Negative Duration Dependence
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Figure S.3: Long-Term Effects for Four Scenarios for Positive Duration Dependence
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Figure S.4: Long-Term Effects for Four Scenarios for Non-Monotonic 1 Duration Dependence
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Figure S.5: Long-Term Effects for Four Scenarios for Non-Monotonic 2 Duration Dependence
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Figure S.6: Two Methods of Depicting Long-Term Effects: Negative Duration Dependence
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Note: Numbers attached to points represent the values of t in the scenarios.

Figure S.7: Two Methods of Depicting Long-Term Effects: Positive Duration Dependence
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Figure S.8: Two Methods of Depicting Long-Term Effects: Non-Monotonic Duration Dependence
(Parabolic)
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Note: Numbers attached to points represent the values of t in the scenarios.

Figure S.9: Two Methods of Depicting Long-Term Effects: Non-Monotonic Duration Dependence
(Log-Logistic)
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Figure S.10: Variations of Long-Term Effects Based on the Counterfactual of Interest for Negative
Duration Dependence
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Figure S.11: Variations of Long-Term Effects Based on the Counterfactual of Interest for Positive
Duration Dependence
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Figure S.12: Variations of Long-Term Effects Based on the Counterfactual of Interest for Non-
Monotonic Duration Dependence (Parabolic)
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Note: Numbers attached to points represent the values of t in the scenarios.
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Figure S.13: Variations of Long-Term Effects Based on the Counterfactual of Interest for Non-
Monotonic Duration Dependence (Log-Logistic)
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Note: Numbers attached to points represent the values of t in the scenarios.
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Table S.1: Performance of βx under Various Circumstances in Monte Carlo Experiments: Negative
Duration Dependence

Scenario Avg. βXK
Bias MSE SE SD

Exponential (Flat)
N=1000; 1s=16% 0.964 0.082 0.011 0.098 0.096
N=1000; 1s=37% 0.964 0.062 0.006 0.073 0.069
N=5000; 1s=16% 0.962 0.047 0.003 0.044 0.043
N=5000; 1s=36% 0.959 0.044 0.003 0.033 0.032
N=10,000; 1s=16% 0.959 0.043 0.003 0.031 0.031

N=10,000; 1s=36% 0.959 0.042 0.02 0.023 0.024

Temporal Dummies
N=1000; 1s=16% 1.002 0.078 0.010 0.101 0.100
N=1000; 1s=37% 1.004 0.057 0.005 0.076 0.071
N=5000; 1s=16% 1.000 0.036 0.002 0.045 0.044
N=5000; 1s=36% 1.001 0.027 0.001 0.034 0.034
N=10,000; 1s=16% 0.998 0.025 0.001 0.032 0.032

N=10,000; 1s=36% 1.000 0.019 0.001 0.024 0.025

Cubic Polynomials
N=1000; 1s=16% 0.999 0.078 0.010 0.101 0.099
N=1000; 1s=37% 1.006 0.057 0.005 0.076 0.072
N=5000; 1s=16% 0.995 0.036 0.002 0.045 0.045
N=5000; 1s=36% 1.000 0.027 0.001 0.034 0.034
N=10,000; 1s=16% 0.992 0.026 0.001 0.032 0.032

N=10,000; 1s=36% 0.999 0.020 0.001 0.024 0.025

B-Splines
N=1000; 1s=16% 1.005 0.078 0.010 0.101 0.100
N=1000; 1s=37% 1.007 0.057 0.005 0.076 0.072
N=5000; 1s=16% 1.000 0.036 0.002 0.045 0.045
N=5000; 1s=36% 1.001 0.027 0.001 0.034 0.034
N=10,000; 1s=16% 0.999 0.025 0.001 0.032 0.032

N=10,000; 1s=36% 1.000 0.020 0.001 0.024 0.025

Automated Smoothing Splines
N=1000; 1s=16% 0.997 0.078 0.010 0.101 0.099
N=1000; 1s=37% 1.003 0.057 0.005 0.075 0.071
N=5000; 1s=16% 0.997 0.036 0.002 0.045 0.045
N=5000; 1s=36% 1.000 0.027 0.001 0.034 0.034
N=10,000; 1s=16% 0.995 0.026 0.001 0.032 0.032

N=10,000; 1s=36% 0.999 0.020 0.001 0.024 0.025

Note: Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected squared bias: E[(β̂x − 1)2].
SE is the mean of the simulated standard errors. SD is the standard deviation of the estimates.
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Table S.2: Performance of βx under Various Circumstances in Monte Carlo Experiments: Positive
Duration Dependence

Scenario Avg. βXK
Bias MSE SE SD

Exponential (Flat)
N=1000; 1s=12% 0.974 0.090 0.013 0.114 0.110
N=1000; 1s=20% 0.990 0.074 0.008 0.090 0.091
N=5000; 1s=12% 0.968 0.048 0.004 0.051 0.051
N=5000; 1s=20% 0.987 0.034 0.002 0.040 0.040
N=10,000; 1s=12% 0.967 0.041 0.002 0.036 0.037

N=10,000; 1s=20% 0.986 0.026 0.001 0.028 0.029

Temporal Dummies
N=1000; 1s=12% 1.010 0.089 0.013 0.118 0.113
N=1000; 1s=20% 1.006 0.074 0.009 0.092 0.093
N=5000; 1s=12% 1.002 0.041 0.003 0.052 0.052
N=5000; 1s=20% 1.001 0.032 0.002 0.041 0.040
N=10,000; 1s=12% 1.000 0.030 0.001 0.037 0.038

N=10,000; 1s=20% 1.000 0.023 0.001 0.029 0.029

Cubic Polynomials
N=1000; 1s=12% 1.014 0.090 0.013 0.118 0.113
N=1000; 1s=20% 1.009 0.074 0.009 0.092 0.093
N=5000; 1s=12% 1.003 0.041 0.003 0.052 0.052
N=5000; 1s=20% 1.001 0.032 0.002 0.041 0.040
N=10,000; 1s=12% 1.002 0.030 0.001 0.037 0.038

N=10,000; 1s=20% 1.000 0.023 0.001 0.029 0.029

B-Splines
N=1000; 1s=12% 1.013 0.090 0.013 0.118 0.113
N=1000; 1s=20% 1.009 0.074 0.009 0.092 0.093
N=5000; 1s=12% 1.003 0.041 0.003 0.052 0.052
N=5000; 1s=20% 1.001 0.032 0.002 0.041 0.040
N=10,000; 1s=12% 1.002 0.030 0.001 0.037 0.038

N=10,000; 1s=20% 1.000 0.023 0.001 0.029 0.029

Automated Smoothing Splines
N=1000; 1s=12% 1.009 0.089 0.013 0.118 0.113
N=1000; 1s=20% 1.006 0.074 0.009 0.092 0.093
N=5000; 1s=12% 1.002 0.041 0.003 0.052 0.052
N=5000; 1s=20% 1.001 0.032 0.002 0.041 0.040
N=10,000; 1s=12% 1.000 0.030 0.001 0.037 0.038

N=10,000; 1s=20% 1.000 0.023 0.001 0.029 0.029

Note: Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected squared bias: E[(β̂x − 1)2].
SE is the mean of the simulated standard errors. SD is the standard deviation of the estimates.
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Table S.3: Performance of βx under Various Circumstances in Monte Carlo Experiments: Non-
Monotonic (Parabolic) Duration Dependence

Scenario Avg. βXK
Bias MSE SE SD

Exponential (Flat)
N=1000; 1s=24% 0.913 0.100 0.014 0.081 0.080
N=1000; 1s=50% 0.951 0.070 0.007 0.069 0.070
N=5000; 1s=24% 0.914 0.086 0.009 0.036 0.038
N=5000; 1s=50% 0.952 0.050 0.003 0.031 0.032
N=10,000; 1s=24% 0.912 0.088 0.008 0.026 0.026

N=10,000; 1s=50% 0.949 0.051 0.003 0.022 0.021

Temporal Dummies
N=1000; 1s=24% 0.998 0.070 0.008 0.087 0.087
N=1000; 1s=50% 1.001 0.057 0.005 0.072 0.070
N=5000; 1s=24% 1.000 0.032 0.002 0.039 0.040
N=5000; 1s=50% 1.002 0.026 0.001 0.032 0.032
N=10,000; 1s=24% 1.000 0.022 0.001 0.027 0.028

N=10,000; 1s=50% 0.999 0.018 0.001 0.023 0.022

Cubic Polynomials
N=1000; 1s=24% 1.003 0.070 0.008 0.087 0.088
N=1000; 1s=50% 1.003 0.057 0.005 0.073 0.070
N=5000; 1s=24% 1.003 0.032 0.002 0.039 0.040
N=5000; 1s=50% 1.003 0.026 0.001 0.032 0.032
N=10,000; 1s=24% 1.001 0.022 0.001 0.027 0.028

N=10,000; 1s=50% 1.000 0.018 0.001 0.023 0.022

B-Splines
N=1000; 1s=24% 1.003 0.070 0.008 0.087 0.088
N=1000; 1s=50% 1.003 0.057 0.005 0.073 0.071
N=5000; 1s=24% 1.002 0.032 0.002 0.039 0.040
N=5000; 1s=50% 1.003 0.026 0.001 0.032 0.032
N=10,000; 1s=24% 1.000 0.022 0.001 0.027 0.028

N=10,000; 1s=50% 1.000 0.018 0.001 0.023 0.022

Automated Smoothing Splines
N=1000; 1s=24% 1.000 0.070 0.008 0.087 0.088
N=1000; 1s=50% 1.000 0.057 0.005 0.073 0.070
N=5000; 1s=24% 1.002 0.032 0.002 0.039 0.040
N=5000; 1s=50% 1.002 0.026 0.001 0.033 0.032
N=10,000; 1s=24% 1.000 0.022 0.001 0.027 0.028

N=10,000; 1s=50% 1.000 0.018 0.001 0.023 0.022

Note: Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected squared bias: E[(β̂x − 1)2].
SE is the mean of the simulated standard errors. SD is the standard deviation of the estimates.

25



Table S.4: Performance of βx under Various Circumstances in Monte Carlo Experiments: Non-
Monotonic (Log-Logistic) Duration Dependence

Scenario Avg. βXK
Bias MSE SE SD

Exponential (Flat)
N=1000; 1s=27% 0.986 0.065 0.007 0.081 0.080
N=1000; 1s=46% 0.998 0.057 0.005 0.071 0.070
N=5000; 1s=27% 0.986 0.032 0.002 0.036 0.037
N=5000; 1s=46% 0.996 0.026 0.001 0.032 0.032
N=10,000; 1s=27% 0.984 0.025 0.001 0.026 0.026

N=10,000; 1s=46% 0.994 0.018 0.001 0.022 0.022

Temporal Dummies
N=1000; 1s=27% 1.002 0.065 0.007 0.082 0.081
N=1000; 1s=46% 1.005 0.057 0.005 0.072 0.070
N=5000; 1s=27% 1.002 0.030 0.001 0.037 0.037
N=5000; 1s=46% 1.002 0.026 0.001 0.032 0.032
N=10,000; 1s=27% 1.000 0.022 0.001 0.026 0.027

N=10,000; 1s=46% 0.999 0.018 0.001 0.023 0.022

Cubic Polynomials
N=1000; 1s=27% 1.001 0.064 0.007 0.082 0.081
N=1000; 1s=46% 1.007 0.057 0.005 0.072 0.070
N=5000; 1s=27% 0.998 0.030 0.001 0.037 0.037
N=5000; 1s=46% 1.002 0.025 0.001 0.032 0.032
N=10,000; 1s=27% 0.996 0.022 0.001 0.026 0.027

N=10,000; 1s=46% 0.999 0.018 0.001 0.023 0.022

B-Splines
N=1000; 1s=27% 1.003 0.065 0.007 0.082 0.081
N=1000; 1s=46% 1.006 0.057 0.005 0.072 0.070
N=5000; 1s=27% 1.000 0.030 0.001 0.037 0.037
N=5000; 1s=46% 1.002 0.025 0.001 0.032 0.032
N=10,000; 1s=27% 0.999 0.022 0.001 0.026 0.027

N=10,000; 1s=46% 0.999 0.018 0.001 0.023 0.022

Automated Smoothing Splines
N=1000; 1s=27% 0.999 0.064 0.007 0.082 0.081
N=1000; 1s=46% 1.003 0.057 0.005 0.072 0.070
N=5000; 1s=27% 0.999 0.030 0.001 0.037 0.037
N=5000; 1s=46% 1.001 0.025 0.001 0.032 0.032
N=10,000; 1s=27% 0.997 0.022 0.001 0.026 0.027

N=10,000; 1s=46% 0.999 0.018 0.001 0.023 0.022

Note: Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected squared bias: E[(β̂x − 1)2].
SE is the mean of the simulated standard errors. SD is the standard deviation of the estimates.
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Figure S.14: Average Hazard Rates Compared to True Hazard Rates
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Note: N=1,000, sims = 1,000, beta = c(-3, 1).
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Figure S.15: Average Hazard Rates Compared to True Hazard Rates
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Note: N=1,000, sims = 1,000, beta = c(-2, 1).
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Figure S.16: Average Hazard Rates Compared to True Hazard Rates
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Note: N=5,000, sims = 1,000, beta = c(-3, 1).
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Figure S.17: Average Hazard Rates Compared to True Hazard Rates
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Note: N=5,000, sims = 1,000, beta = c(-2, 1).
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Figure S.18: Estimated Hazard Rates Compared to True Hazard Rates: Negative Duration Depen-
dence
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Note: N=1,000, sims = 1,000, beta = c(-3, 1).
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Figure S.19: Estimated Hazard Rates Compared to True Hazard Rates: Positive Duration Depen-
dence
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Figure S.20: Estimated Hazard Rates Compared to True Hazard Rates: Non-Monotonic Duration
Dependence (Parabolic)
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Note: N=1,000, sims = 1,000, beta = c(-3, 1).
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Figure S.21: Estimated Hazard Rates Compared to True Hazard Rates: Non-Monotonic Duration
Dependence (Log-Logistic)
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Note: N=1,000, sims = 1,000, beta = c(-3, 1).
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Table S.5: Performance of βx under Various Circumstances in Monte Carlo Experiments: Negative
Duration Dependence with Positive Non-Proportional Hazards

Scenario Avg. βXK
Bias MSE SE SD

Temporal Dummies
βXt = 0.2 1.001 0.063 0.006 0.079 0.079
βXt = 0.1 1.006 0.066 0.007 0.085 0.083
βXt = 0.04 1.006 0.077 0.010 0.092 0.099

βXt = 0.02 1.003 0.076 0.009 0.096 0.096

Cubic Polynomials
βXt = 0.2 1.004 0.063 0.006 0.080 0.079
βXt = 0.1 1.008 0.066 0.007 0.085 0.083
βXt = 0.04 1.006 0.077 0.010 0.092 0.098

βXt = 0.02 1.003 0.075 0.009 0.096 0.095

B-Splines
βXt = 0.2 1.004 0.063 0.006 0.080 0.079
βXt = 0.1 1.008 0.066 0.007 0.085 0.083
βXt = 0.04 1.008 0.077 0.010 0.092 0.098

βXt = 0.02 1.006 0.075 0.009 0.096 0.096

Automated Smoothing Splines
βXt = 0.2 1.000 0.063 0.006 0.079 0.079
βXt = 0.1 1.005 0.066 0.007 0.085 0.083
βXt = 0.04 1.004 0.077 0.010 0.092 0.097

βXt = 0.02 1.001 0.075 0.009 0.095 0.095

Note: N=1000, betas = c(-3,1), x is drawn randomly from a uniform distribution, ∈ [−2, 2].
Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected
squared bias: E[(β̂x − 1)2]. SE is the mean of the simulated standard errors. SD is the
standard deviation of the estimates.
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Table S.6: Performance of βx under Various Circumstances in Monte Carlo Experiments: Positive
Duration Dependence with Negative Non-Proportional Hazards

Scenario Avg. βXK
Bias MSE SE SD

Temporal Dummies
βXt = −0.2 1.036 0.206 0.073 0.263 0.268
βXt = −0.1 1.014 0.121 0.023 0.148 0.152
βXt = −0.04 1.006 0.100 0.016 0.126 0.128

βXt = −0.02 1.011 0.098 0.015 0.122 0.123

Cubic Polynomials
βXt = −0.2 1.043 0.207 0.074 0.265 0.268
βXt = −0.1 1.018 0.121 0.023 0.148 0.152
βXt = −0.04 1.010 0.101 0.017 0.126 0.128

βXt = −0.02 1.016 0.099 0.016 0.122 0.124

B-Splines
βXt = −0.2 1.039 0.206 0.073 0.263 0.267
βXt = −0.1 1.016 0.121 0.023 0.148 0.152
βXt = −0.04 1.008 0.101 0.016 0.126 0.128

βXt = −0.02 1.014 0.098 0.016 0.122 0.124

Automated Smoothing Splines
βXt = −0.2 1.034 0.204 0.071 0.263 0.265
βXt = −0.1 1.012 0.120 0.023 0.147 0.151
βXt = −0.04 1.005 0.100 0.016 0.126 0.127

βXt = −0.02 1.011 0.097 0.015 0.122 0.123

Note: N=1000, betas = c(-3,1), x is drawn randomly from a uniform distribution, ∈ [−2, 2].
Bias is the mean of absolute bias: |β̂x − 1|. MSE is the mean of expected
squared bias: E[(β̂x − 1)2]. SE is the mean of the simulated standard errors. SD is the
standard deviation of the estimates.
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Figure S.22: Average Hazard Rates Compared to True Hazard Rate under Non-Proportional Haz-
ards
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Note: N=1,000, sims = 1,000, beta = c(-3, 1), βXt=0.04 and -0.04, respectively.
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Figure S.23: Average Predictive Differences of XK (βXK
= 1) with Alternative Estimation Tech-

niques under Conditions Ignoring Non-Proportional Hazards
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Note: The data reflect negative duration dependence with positive non-proportional hazards,Xk×t.
N=1,000, β0 = −3. The non-proportional hazards are unmodeled in each technique.
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Figure S.24: Average Predictive Differences of XK (βXK
= 1) with Alternative Estimation Tech-

niques under Conditions Ignoring Non-Proportional Hazards
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Note: The data reflect positive duration dependence with negative non-proportional hazards,Xk×t.
N=1,000, β0 = −3. The non-proportional hazards are unmodeled in each technique.
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Figure S.25: Predicted Probability of Dispute Initiation for Coalition Governments and Ideological
Distance (Figure 2, Clare 2010: 982)
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Note: Rug plots provide the sample distribution of ideological distance. Shaded areas represent
the predicted probability of dispute initiation for cohesive coalitions (left panel) and single-party
governments (right panel).
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Figure S.26: Receiver-Operating Characteristic (ROC) Curve for Clare (2010)
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Figure S.27: Separation Plot for Clare (2010)

Table S.7: Values of Variables for Scenarios in Figure 6 of Manuscript

Pr=0.003 Pr=0.05 Pr=0.10 Pr=0.50
Government Fractionalization Min 75th 95th Max
Peaceyears 5 5 5 5
Coalition Government 0 1 1 1
Government Ideology Min 75th 80th Max
Minority Government 1 0 0 0
Military Capabilities 25th 75th 90th Max
Number of Bordering Democracies 75th Mean 5th Min
Number of Bordering Allies 75th Mean 5th Min
Trade Dependence 75th Min Min Min
Number of Veto Players 75th 25th 5th Min
Note: Numbers represent either raw values (binary or discrete variables)
or percentiles (continuous).
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Table S.8: Test for Non-Proportional Hazards in Clare’s (2010) Model of Dispute Initiation

Variable β S.E.
Government Fractionalization 0.007** (0.003)
Peaceyears -0.08** (0.02)
Peaceyears2 0.002** (0.001)
Peaceyears3 -0.00002** (8.4×10−6)
Fractionalization×Peaceyears -0.0003 (0.001)
Fractionalization×Peaceyears2 2.2×10−6 (4.0×10−5)
Fractionalization×Peaceyears3 2.9×10−9 (4.6×10−7)
Coalition Government 0.04 (0.13)
Government Ideology 0.002 (0.001)
Minority Government -0.23 (0.18)
Military Capabilities 5.10 (5.09)
Number of Bordering Democracies 0.14 (0.21)
Number of Bordering Allies -0.30** (0.11)
Trade Dependence -0.06 (0.43)
Number of Veto Players -0.05 (0.07)
N 3,336
ePCP 94.6%
AUC 0.77 0.03

Note:∗∗ = p < .05, ∗ = p < .1 (two-tailed)
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Figure S.28: Box-Whisker Plots of the Change in Predicted Probability for a 1-Unit Increase in x
(β = 1) across Ranges of Probabilities: 0.2 Range
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Note: Each range of probabilities is drawn from a uniform distribution (N = 2000).
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Figure S.29: Box-Whisker Plots of the Change in Predicted Probability for a 1-Unit Increase in x
(β = 1) across Ranges of Probabilities: 0.4 Range
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Note: Each range of probabilities is drawn from a uniform distribution (N = 2000)
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