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Overview

In this Online Appendix I describe the procedures used to produce the survey, meta-analysis, and a
brief discussion on the linear probability model.

Survey Description

I used the Web of Science database to collect all studies that cite either Beck, Katz and Tucker
(1998) or Carter and Signorino (2010) from the following six journals: American Political Science
Review (February 2017, Issue 1), American Journal of Political Science (January 2017, Issue 1),
the Journal of Politics (July 2017, Issue 3), International Studies Quarterly (March 2017, Issue
1), International Organization (Summer 2017, Issue 3), and the Journal of Conflict Resolution
(November 2017, Issue 10). I excluded those pieces that were not addressing substantive questions
(such as methodology papers).

For each piece, I code whether they actually implement the BKT or CS suggestions (instead
of simply citing them), how they deal with temporal dependence (such as splines or cubic poly-
nomials), how they interpret the TDVs (if necessary), whether they calculate QIs for their primary
theoretical variable, whether a scenario used to calculate the QI is provided, and the value of the ¢
in that scenario. I summarize the patterns from this survey in the manuscript.
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Meta-Analysis

From the universe of citations that I survey above, I randomly sample 20 studies from each of
the six journals listed above. If the study was not quantitative in nature, did not use the methods
suggested by BKT/CS, did not generate QIs, or did not offer complete replication materials, it was
excluded and another study was randomly selected.

Linear Probability Model

Angrist and Pischke (2009) offer an intriguing solution to the problem of compression outlined
in the manuscript. The linear probability model (LPM)—estimated via ordinary least squares
regression—provides a marginal effect of X on Y that is constant across all values of X, and
any other X. Though there are some other issues associated with estimating an LPM on a non-
continuous outcome (see Long 1997), Angrist and Pischke (2009) raise the possibility that the
marginal effect from OLS is comparable to the average marginal effect from the nonlinear model.
Indeed, they provide some preliminary evidence from an application of the effects of childbearing
on mothers’ labor supply that supports this notion.

In Table[A.T|T estimate the LPM on the 20 models from the meta-analysis to see if these values
are generally comparable across studies of international relations. In the Nonlinear QI column I
depict the average of the in-sample partial effects from the nonlinear model (either logit or probit in
this sample). The other two columns depict the range of in-sample partial effects, and the marginal
effect from the LPM.

The clear pattern from Table[A.T]is that the LPM marginal effect is quite close to the average
in-sample partial effect estimated via logit or probit. There are a few notable case studies where
they depart a great deal from each other (most notably the Salehyan 2008 and Fuhrmann and Kreps
2010 studies), but beyond that the LPM does an admirable job in retrieving the “average” effect
in the sample. In fact, all the studies but one (Salehyan 2008) have LPM marginal effects that are
within a standard deviation of the mean in-sample nonlinear partial effect.

If scholars are focused on quickly generating an easy-to-interpret measure of the average ef-
fect, then the LPM is an obvious alternative. The choice to estimate an LPM comes with clear
drawbacks, however, as the final column reveals. Only a few studies produce predicted probabil-
ities that fall almost entirely in the reasonable boundaries of 0 and 1. Some (Fordham and Asal
2007, Fuhrmann and Kreps 2010, and Weeks 2012) fail to produce even a majority of reasonable
predictions from the LPM.



Table A.1: Comparison of Quantities of Interest from Nonlinear and Linear Probability Models

Citation Variable Nonlinear QI*  Probability’ LPM QI (%)¢ + 1SD? % Nonsense®
Gelpi and Feaver (2002: 789) Percent Veteran -.029 .034 -.017 (49) 1 9.3
Meinke, et al. (2006: 188) Ideological Distance -.570 .693 -.605 (60) 1 29.6
Salehyan and Gleditsch (2006: 356-357) Refugees +.007 .040 +.016 (88) 1 25.5
Fordham and Asal (2007: 41) Major Power Democracy +.036 .006 +.029 (63) 1 56.5
Gleditsch, et al. (2008: 492) Civil War +.009 .024 +.012 (81) 1 37.5
Salehyan (2008: 797) Refugees in Initiator +.008 .013 +.042 (95) 0 38.0
Ostby, et al. (2009: 314-315) Distance to Neighboring Conflict -.034 .051 -.035 (32) 1 0.1
Fuhrmann and Kreps (2010: 851) Violent Conflict +.021 .001 +.049 (91) 1 59.7
Cunningham, et al. (2012: 80) Violent Factions +.087 177 +.085 (59) 1 33.8
Kleinberg, et al. (2012: 536) Trade Concentration -.0002 .001 -.0003 (11) 1 41.6
Owsiak (2012: 64) Settled Borders -.015 .065 -.022 (22) 1 0.3
Weeks (2012: 342) Machine -.0006 .002 -.0004 (17) 1 59.3
Fuhrmann and Sechser (2014: 929) Deployment -.002 .004 -.001 (30) 1 23.0
Miller (2014: 926) Dependence Score -.012 .0002 -.012 (19) 1 14
Peterson (2015: 713, 718) Distortion +.0003 .002 +.0002 (79) 1 43.8
Wu (2015: 798) Labor Endowment +.008 .293 +.009 (74) 1 38.1
Bapat, et al. (2016: 262) GDP Per Capita +.084 .036 +.024 (10) 1 15.2
Bapat and Zeigler (2016: 347) Terrorists +.096 .009 +.047 (25) 1 31.8
Bayer and Urpelainen (2016: 612) Democracy +.031 .010 +.018 (56) 1 32.3
Casper (2017: 983) Program Initiation +.050 .052 +.031 (48) 1 31.4

¢ Mean in-sample quantity of interest from logit or probit.

b Mean in-sample baseline predicted probabilities.

¢ Quantity of interest from linear probability model (with percentile based on in-sample nonlinear QI in parentheses).
4 Does QI from LPM fall within a standard deviation of mean in-sample nonlinear QI?

¢ Percentage of baseline predicted probabilities from LPM falling outside reasonable bounds (< 0 or > 1).



In Table [A.2] I provide those same comparisons for the three applications explored in the
manuscript. The same general patterns discussed above in the meta-analysis apply equally to
these three studies. Besides Way and Weeks (2014), the marginal effect from the LPM is quite
close to the mean marginal effect from nonlinear model. The significant drawback is that the LPM
generates nonsensical predictions for almost (or more than) a majority of observations.



Table A.2: Comparison of Quantities of Interest from Nonlinear and Linear Probability Models: Three Applications

Cite Nonlinear QI*  Range”  LPM QI (%)° +1SD? % Nonsense®
Way and Weeks (2014) +.007 [0, .64] +.041 (97) 1 53.2
Cunningham (2013) +.203 [.023, .561] +.199 (57) 1 46.7
Flores-Macias and Kreps (2013) +.199 [.005, .619]  +.209 (61) 1 45.8

% Mean in-sample quantity of interest from logit or probit.

b Range of in-sample quantity of interest from logit or probit.

¢ Quantity of interest from linear probability model (with percentile based on in-sample nonlinear QI in parentheses).
4 Does QI from LPM fall within a standard deviation of mean in-sample nonlinear QI?

¢ Percentage of baseline predicted probabilities from LPM falling outside reasonable bounds (< 0 or > 1).



Compression

In practice, this means that the size of the quantity of interest will depend on the baseline probabil-
ities. To demonstrate how the range of baseline probabilities influence the size of these changes, I
set up a series of simulations of 2000 observations drawn from a uniform distribution over various
ranges of probabilities (e.g., Pr = [0.3,0.7]). Thus, the sample size and standard deviations are
nearly constant across probability ranges. I then calculate the changes in predicted probability for
a l-unit increase in X}, (Bx, = 1) across different ranges of baseline probabilities. Another way to
think of these baseline probabilities is representing observations with different values of the inde-
pendent variables. I present box-whisker plots of the substantive effects for the various simulations

in Figure

As Figure [A.] shows, compression heavily influences the quantities of interest in two ways.
Compression produces considerable variation in quantities of interest across the sample. An iden-
tical shift in X produces 2000 different quantities of interest, depending on the observation’s loca-
tion along the CDF. Figure also shows that compression generates sensitivity, in that changes
to the scenario produce changes in the quantities of interest. The quantities of interest are sensitive
to the scenario (in this case, probabilities) and range from nearly O to 0.25. First, it is clear that
scholars depicting substantive effects with simulation scenarios that generate probabilities near 0.5
(such as those in the [0.3, 0.7] range) will demonstrate, on average, larger effects than those with
consistently low or high ranges. Second, the sensitivity within these ranges increases as one shifts
away from 0.5. Essentially, this identifies the situations where the substantive effects are most
sensitive to changes in the scenario. The box-whisker plots in Figure show that the effects of a
key theoretical variable will be much more sensitive to the values of the control variable for proba-
bility ranges near 0 ([0, 0.4]) or 1 ([0.6, 1.0]) compared to 0.5 ([0.3, 0.7]). While econometricians
have long emphasized that quantities of interest in binary models depend on the scenarios chosen
(e.g., Maddala 1983: 23-24), it has only recently triggered a debate in political science regarding
the proper way to handle “hyper-sensitivity” (e.g., Nagler 1994), including whether interaction
variables are actually necessary (Berry, DeMeritt and Esarey 2010; Rainey 2016).

For example, consider the often-studied outcome of international disputes. Using a relatively
liberal definition of conflict including threats, demonstrations and uses of force on the universe of
dyads from 1816-1991 results in conflicts in only 4.7% of the dyad-years (Russett and Oneal 2001).
A low baseline probability such as this corresponds to values of X 3 that are largely negative, and
quite small. The patterns of duration dependence in international conflict are typically negative,
indicating that the baseline probability of a dispute is highest immediately following a dispute,
and then declines with the passage of time. Figure [A.3] shows the cumulative density function
for the logistic distribution (left panel) and an example of negative duration dependence (right
panel) (Russett and Oneal 2001). With these two pieces of information in hand, it is clear that the
quantities of interest are quite sensitive to the scenario chosen (in this case, t). One can deduce that
the largest substantive effect for a variable will occur at extremely small values of the TDVs (since
this configuration of values increases X /5 toward 0) and decrease at higher values of TDVs (as the
X 3 becomes more negative). Furthermore, the figure on the right ignores the variability of partial



Figure A.1: Box-Whisker Plots of the Change in Predicted Probability for a 1-Unit Increase (5 =
1) across Ranges of Probabilities
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Note: Each range of probabilities is drawn from a uniform distribution (N = 2000).

effects in the sample. While other simple scenarios—such as low probability outcomes coupled
with postitive duration dependence—may be easy to conceptualize, outcomes with probabilities
closer to 0.5 and non-linear functional forms of duration dependence (such as splines) complicate
this conceptualization considerably. In the absence of a more careful exploration of quantities of
interest (see the recommendations below), without this information, the reader cannot assess how
the substantive effects vary as a function of the underlying hazard rate.



Figure A.3: Cumulative Density Function for the Logistic Distribution (Left Panel) and an Exam-
ple of Negative Duration Dependence (Right Panel)

Cumulative Density Function Negative Duration Dependence
1.00 : \
]
| '.
[}
]
]
[}
1
]
|
0.75 i
1 0.04
]
]
1
1
:
—~ !
— 1
I
R e
= |
o |
]
:
| 0.02
1
]
0.25 |
]
]
[}
1
1
[}
1
:
1
0.00 :
1 0.00
-50 -25 00 25 5.0 0 5 10 15
XB Time Since Previous Dispute

Stata Program for Estimating Compression Effects

In this section I briefly describe a Stata program that automates the calculation of the measures
of partial effects discussed in the manuscript[] The command sdpe calculates in-sample partial
effects and provides the meaningful values of the distribution of partial effects, including the mean,
standard deviation, minimum and maximum. Optionally, the user can specify a variable that she
suspects is causing some conditionality (such as time) and sdpe will provide these values across
each unique value of time (the option comp (time)).

Flexibility was a priority in the creation of the program. Toward this end, sdpe calculates par-

'If this manuscript is accepted for publication, I will upload this program and its help file to Stata’s Statistical
Software Components (SSC) archive.



tial effects following a wide variety of the most common versions of logit and probit models (e.g.,
such as population-averaged, random effects and fixed effects). Moreover, the code for specifying
the variables used to calculate the partial effects is based on King, Tomz and Wittenberg’s (2000)
setx command, so many users are already familiar with the basic syntax. One can specify multi-
ple variables (such as lower-order and interaction terms) to calculate the marginal effects and users
can set the variables to a wide variety of functions (such as minimum, maximum, mean, median,
percentiles).

For example, consider Oneal and Russett’s (1997: 286) model of dispute initiation. Assume
that we were interested in the change in the probability of dispute initiation as the lower democracy
(dem__1ow) in the dyad changes from a value of -10 (full autocracy) to +10 (full democracy). We
first estimate the logit model, and then calculate the partial effects with sdpe. The command also
returns the values depicting the distribution as local macros, so it is easy to use these values for
other purposes (perhaps in a foreach loop orapostfile).

. quietly logit dispute dem_low dem_hi growth_low allies contig capratio /*
> */ depend_low d_depend_hi democ_chg autoc_chg _prefail t t2 t3

. sdpe dem_low -10 10

Partial Effect

Percentiles smallest

1% -.1947876 -.2252312

5% -.0792117 -.2252281
10% -.0351589 -.2252119 Obs 19455
25% -.012184 -.2251843 Sum of wgt. 19455
50% -.0043752 Mean -.0158471
Largest Std. Dev. .0333926

75% -.0027483 -5.60e-21
90% -.001052 -2.71e-21 variance .0011151
95% -.0003925 -2.38e-21 Skewness -3.985807
99% -7.91e-07 -1.76e-21 Kurtosis 20.18231

return list

scalars:
r(maxpe) = -1.76063656626e-21
r(minpe) = -.2252312004566193
r(sdpe) = .0333926326349945
r(ape) = -.0158471045645255

Concerns about temporal conditionality warrant an examination of these values across .
sdpe dem_low —-10 10, comp (t)

In addition to the partial effects that are presented as the default, including the comp (t) option
produces the subgroup partial effects across values of ¢. Also notice that these values are returned
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t mean_pe sd_pe min_pe max_pe
4, 3 -.033351 .0338249  -.2251843 -5.60e-21
5. 4 -.0245958 .0257234  -.2110711 -2.71e-21
6. 5 -.0187978 .0201508 -.21299 -1.76e-21
8. 7 -.0121491 .0135267 -.1866422 -2.38e-21
10. 9 -.0083461 .0081977 -.0618138 -2.91e-11
11 10 -.0070998 .0070606 -.0552553 -2.79%e-11
12. 11  -.0062957 .0062309 -.0504371 -2.17e-11
13. 12 -.0056591 .0056165 -.0470269 -2.60e-11
14. 13 -.0051796 .0051725 -.0441802 -3.28e-11
17. 16 -.0044701 .0042622 -.0390172 -3.97e-09
18. 17  -.0043427 .0042111 -.0381188 -3.36e-09
19. 18 -.004234 .0037288 -.0234532 -1.11e-08
20 19 -.0042892 .0037831 -.0228583 -9.83e-08
21 20 -.0042654 .0036314 -.0252584 -9.32e-09
23 22 -.0043461 .0033658 -.0201519 -.0001619
25. 24  -.0042921 .0034485 -.0232595 -.0001728
26. 25 -.0043438 .0034096 -.0240389 -.000049
27. 26  -.0047253 .0035974  -.0239113 -.0001649
28. 27 -.0048843 .0036623 -.0236125 -.0000243
29. 28 -.0048636 .0036301 -.022619 -.0002629
30. 29 -.0047258 .003554 -.0262076 -.0001317
32. 31 -.0046785 .0033526 -.0205246 -.0002908
35. 34 -.0043329 .0030916 -.0151019 -.0002701
36. 35 -.0041402 .0032442 -.02269 -.0002366
. return Tist
scalars:
r(maxpe) = -1.76063656626e-21
r(minpe) = -.2252312004566193
r(sdpe) = .0333926326349945
r(ape) = -.0158471045645255
matrices:
r(tempcond) : 36 x 5
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as a matrix called r (tempcond), so it is easy to produce a simple figure depicting the temporal
conditionality. The following commands use the values in the returned matrix to graphically depict
the mean and standard deviation of the partial effects across values of z.

. preserve
clear
matrix tempcond = r(tempcond)
. svmat tempcond, names(col)
number of observations will be reset to 36
Press any key to continue, or Break to abort
obs was 0, now 36

. twoway (line mean_pe t) (line sd_pe t, 1pattern(dash)), /*
> */ ytitle("Partial Effect") legend(label(1 "Mean") label(2 "s.D.™))

restore

Partial Effect

Mean S.D.
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